Antep Fıstığı İşleme Sanayi Atıksularının Sürekli Elektrokoagülasyon Prosesi ile Arıtımına Etki Eden Parametrelerin İncelenmesi

Antep fıstığı işleme sanayi atıksularının sürekli sistem elektrokoagülasyon prosesiyle arıtım veriminietkileyen parametreler incelenmiştir. Anot elektrot malzemesi olarak elektrokoagülasyon prosesinde alüminyumkullanılmıştır. Katot elektrot malzemesi olarak paslanmaz çelikten imal edilmiş elektrokimyasal reaktör kullanılmıştır.Deneysel çalışmalar sürekli modda gerçekleştirilmiştir. Kullanılan anot elektrot 5 mm et kalınlığında, 60 mm dışçaplı, 650 mm yüksekliğe sahip boru tipi elektrottur. Katot elektrot olarak 3 mm et kalınlığına, 70 mm iççapa, 650 mm yüksekliğe sahip paslanmaz çelikten imal edilmiş reaktör kullanılmıştır. Elektrotlar arası mesafe5 mm olarak seçilmiştir. Giderim verimine etki eden deneysel parametreler olarak, atıksu başlangıç pH değeri veatıksu debisi seçilmiştir. Elektrokoagülasyon prosesi ile yapılan deneysel çalışmaların optimum şartlarında KOİ vetoplam fenol (TF) giderim verimleri sırasıyla %70 ve %92 olarak elde edilmiştir.

The Investigation of Parameters Affecting on Treatment of Pistachio Processing Industry Waste Water by Continuous Electrocoagulation Process

The parameters affecting treatment effciency of pistachio processing industry waste waters wasinvestigated by continuous electrocoagulation process. Aluminum is used as the anode electrode material in theelectrocoagulation process. Electrochemical reactor made of stainless steel was used as a cathode electrode material.Experimental studies carried out in continuous mode. The anode electrode used is an electrode which has 5 mmthick , 60 mm outer diameter , a tubular having 650 mm height. A reactor made of stainless steel with 3 mm wallthickness, 70 mm internal diameter, 650 mm height is used as cathode electrode. Distance between the electrodesis chosen as 5 mm. The initial pH value of waste water and waste water flow rate are chosen as the experimentalparameters effecting the removal effciency. In optimum conditions of experimental studies performed by theelectrocoagulation process, COD and total phenol (TF) removal effciencies were obtained respectively 70% and92%

___

  • Aji, B A, Yavuz, Y, Koparal, A S, 2012. Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. Separation and Purification Technology, 86: 248–254.
  • Anonim, 2015. Türkiye İstatistik Kurumu, Bitkisel Üretim İstatistikleri Veri Tabanı. www.tuik.gov.tr/PreIstatistikTablo.
  • Balasubramanian, N, Kojima, T, Basha, C A, Srinivasakannan, C, 2009. Removal of arsenic from aqueous solution using electrocoagulation. Journal of Hazardous Materials, 167: 966–969.
  • Bayar, S, Boncukcuoğlu, R, Yilmaz, A E, Fil, B A, 2014. Pre-Treatment of Pistachio Processing Industry Wastewaters (PPIW) by Electrocoagulation using Al Plate Electrode, Separation Science and Technology, 49: 1008–1018.
  • Can, O, Kobya, M, Demirbas, E, Bayramoglu, M, 2006. Treatment of the textile wastewater by combined electrocoagulation. Chemosphere, 62: 181–187.
  • Deliktaş, E, 2011. Kağıt Endüstrisi Atıksularının Elektro-Fenton Prosesi İle Arıtılması. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Selçuk Üniversitesi.
  • Diaz, C B, Uribe, B F, Bilyeu, B, 2014. Removal of organic pollutants in industrial wastewater with an integrated system of copper electrocoagulation and electrogenerated H2O2, Chemosphere, 105: 160–164.
  • Fouad, Y O, 2014. Separation of cottonseed oil from oil–water emulsions using electrocoagulation technique. Alexandria Engineering Journal (2014) 53: 199–204.
  • Hariz, I B, Halleb, A, Adhoum, N, Monser, L, 2013. Treatment of petroleum refinery sulfidic spent caustic wastes by electrocoagulation. Separation and Purification Technology, 107: 150–157.
  • Hernandez, I L, Díaz, C B, Bilyeub, B, Rojas, P J G, Medinac, E. C., 2010. A combined electrocoagulation–electrooxidation treatment for industrial wastewater. Journal of Hazardous Materials, 175: 688–694.
  • Isa, M H, Ezechi, E H, Ahmed, Z, Magram, S F, Kutty, S R M, 2014. Boron removal by electrocoagulation and recovery. Water Research, 51: 113-123.
  • Jiang, J Q, Graham, N, André, C, Kelsall, G H, Brandon, N, 2002. Laboratory Study Of Electro-Coagulation–Flotation For Water Treatment. Water Research, 36(16): 4064-4078.
  • Kobya, M, Gebologlu, U, Ulu, F, Oncel, S, Demirbas, E., 2011. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes, Electrochimica Acta, 56: 5060–5070.
  • Lakshmipathiraj, P, Prabhakar, S, Raju, G B, 2010. Studies on the electrochemical decontamination of wastewater containing arsenic. Separation and Purification Technology, 73: 114–121.
  • Melhem, H B and Smith, E, 2012. Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system. Chemical Engineering Journal, 198–199: 201–210.
  • Obanda, M and Owuor P O, 1997. Flavanol composition and caffeine content of green leaf as quality potential indicators of kenyan black teas. Journal of the Science of Food and Agriculture, 74: 209-215.
  • Pajootan, E, Arami, M Mahmoodi, N M, 2012. Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters. Journal of the Taiwan Institute of Chemical Engineers, 43: 282–290.
  • Parsa, J B, Vahidian, H R, Soleymani, A R, Abbasi, M, 2011. Removal of Acid Brown 14 in aqueous media by electrocoagulation: Optimization parameters and minimizing of energy consumption. Desalination, 278: 295–302.
  • Sayiner, G, Kandemirli, F, Dimoglo, A, 2008. Evaluation of boron removal by electrocoagulation using iron and aluminum electrodes, Desalination, 230: 205–212.
  • Tran, N, Drogui, P, Blais, J F, Mercier, G, 2012. Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment, Separation and Purification Technology, 95: 16–25.
  • Un, U T and Ozel, E, 2013. Electrocoagulation of yogurt industry wastewater and the production of ceramic pigments from the sludge, Separation and Purification Technology, 120: 386–391.
  • Vasudevan, S, Lakshmi, J, Sozhan, G, 2013. Electrochemically assisted coagulation for the removal of boron from water using zinc anode, Desalination, 310: 122–129.
  • Yıldız, Y Ş, 2008. Optimization of Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using aluminum electrodes, Journal of Hazardous Materials, 153: 194–200.
  • Yılmaz, A E, Boncukcuoğlu, R, Kocakerim, M M, Kocadağistan, E, 2008. An empirical model for kinetics of boron removal from boron containing wastewaters by the electrocoagulation method in a batch reactor, Desalination, 230: 288–297.
  • Zodi, S, Potier, O, Lapicque, F, Leclerc, J P, 2010. Treatment of the industrial wastewaters by electrocoagulation: Optimization of coupled electrochemical and sedimentation processes. Desalination, 261: 186–190.
  • Zodi, S, Merzouk, B, Potier, O, Lapicque, F, Leclerc, J P, 2013. Direct red 81 dye removal by a continuous flow electrocoagulation/flotation reactor. Separation and Purification Technology, 108: 215–222.