Katyon Değişim Reaksiyonu ile Organokil Sentezi ve Karakterizasyonu

Montmorillonit, [CH3(CH2)15N(CH3)3Br] genel formüllü setil trimetil amonyum bromürle katyon-değişimreaksiyonuna tabi tutulmuştur. Modifye örnekler X-ray difraksiyon (XRD) tekniği ve Fourier dönüşümlü infrared(FTIR) spektroskopisi ile karakterize edilmiştir. Sonuçlar montmorillonit ve organokil örneklerinin zeta potansiyelive temas açısı ölçümleriyle desteklenmiştir. Modifye edilmemiş montmorillonitin bazal mesafesi XRD ile 1.28nm olarak belirlenmiştir ve modifkasyondan sonra 1.3 KDK, 2.56 KDK ve 3.85 KDK için bu değer sırasıyla 1.75nm, 2.03 nm ve 2.56 nm’ye artmıştır. FTIR çalışmaları modifye edilmiş ve modifye edilmemiş montmorillonitörnekleri arasındaki yapısal farklılıkları ortaya koymuştur. Zeta potansiyeli ölçümleri kil yüzey yükünün negatiftenpozitif değerlere kaydığını göstermiştir. Temas açısı ölçümleri modifkasyondan sonra kilin hidroflitesinde birazalma olduğunu göstermiştir .

Synthesis and Characterization of Organoclay via Cation Exchange Reaction

Montmorillonite has been subjected through cation-exchance reaction by cetyltrimethylammoniumbromide (CTAB) with general formula [CH3(CH2)15N(CH3)3Br]. The modifed samples were charecterized by X-raydiffraction (XRD) technique, Fourier transform infrared (FTIR) spectroscopy. The results are supported by themeasurements of zeta potentials and contact angles of montmorillonite and organoclay samples. The basal spacingof unmodifed montmorillonite, determined by XRD, was 1.28 nm and after modifcation it increased up to 1.75nm, 2.03 nm and 2.56 nm for 1.3 CEC, 2.56 CEC and 3.85 CEC respectively. The FTIR studies revealed structuraldifferences between the modifed and unmodifed montmorillonite samples. The zeta potential measurementsshowed that of the clay surface charge shift from negative to positive value. Contact angle measurements haveshown a reduction of the clay hydrophility after the modifcation

___

  • Beneke K, Lagaly G, 1982. The brittle mica-like KNiAs04 and its organic derivatives, Clay Minerals, 17: 175-183. Bibi I, Icenhower J, Niazi NK, Naz T, Shahid M, Bashir S, 2016. Chapter 21-Clay Minerals: Structure, Chemistry, and Significance in Contaminated Environments and Geological CO2 Sequestration. Environmental Materials and Waste. Resource Recovery and Pollution Prevention: 543-567
  • de Paiva LB, Morales AR, Diaz FRV, 2008. Organoclays: properties, preparation and applications, Appl. Clay Sci, 42: 8-24
  • Ebsworth EAV, Sheppard N, 1959. The infra-red spectra of some methylammonium iodides-angle deformation frequencies of NH and NH-2 groups, Spectrochim. Acta, 13: 261–270.
  • Gelfer M, Burger C, Fadeev A, Sics I, Chu B, Hsiao BS, Heintz A, Kojo K, Hsu S, Si M, Rafailovich M, 2004. Thermally induced phase transitions and morphological changes in organoclays, Langmuir, 20: 3746-3758.
  • Holeman, JN, 1965. U.S. Department of Agriculture Soil Conservation Service Engineering Division Technical Release No. 28, Geology.
  • İşçi, S, 2007. Kil/PVA ve Organokil/PVA Nanokompozitlerin Sentezi ve Karakterizasyonu. (Doktora Tezi), Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi. İstanbul.
  • Karaca S, Gürses A, Ejder-Korucu M, 2013. Investigation of the Orientation of CTA+ Ions in the Interlayer of CTAB Pillared Montmorillonite. Journal of Chemistry, Volume 2013: 1-10.
  • Lagaly G, 1986. Interaction of alkylamines with different typesbof layared compounds. Solid State Ionics, 22: 43-51
  • Lagaly G, Zsesmer S, 2003. Colloidal chemistry of clay minerals: the coagulation montmorillonite dispersion. Advances in Colloid and Interface Science, 100-102: 105-128.
  • Lee SY, Kim SJ, 2002. Expansion characteristics of organoclay as a precursor to nanocomposites. Colloids Surf, 211: 19-26.
  • Loughan FC, 1969. Chemical weathering of the silicate minerals. Elsevier, New York.
  • Madejova J, 2003. FTIR techniques in clay mineral studies. Vibratıonal Spectroscopy, 31: 1-10.
  • Mortland MM, Shaobai S, Boyd. SA, 1986. Clays and Clay Minerals, 34: 581-585.
  • Murray HH, 1991. Overview-clay mineral applications. Applied Clay Science, 5: 379-395.
  • Othmani-Assmann H, Benna-Zayani M, Geiger S, Fraisse B, Kbir-Ariguib N, Trabelsi-Ayadi M, Ghermani NE, Grossiord JL, 2007. Physico-chemical characterizations of Tunisian organophilic bentonites, J. Phys. Chem. C, 111: 10869-10877.
  • Ray SS, Okamoto M, 2003. Polymer/Layered Silicate Nanocomposires: a review from preparation to processing. Progres Polymer Science, 28: 1539-1641.
  • Rhoades JD, 1982. Cation Exchange Capacity. Methods of Soil Analysis. Part 2, Second edition American society of Agronomy, Inc., Wisconsin USA: 149-157.
  • Vaia RA, Teukolsky RK, Giannelis EP, 1994. Interlayer structure and molecular environment of alkylammonium layered silicates. Chemical Materials, 6: 1017-1022.
  • Wu XL, Zhao D, Yang ST, 2011. Impact of solution chemistry conditions on the sorption behavior of Cu(II) on Lin’an montmorillonite, Desalination, 269: 84-91
  • Xue W, He H, Zhu J, Yuan P, 2007. FTIR investigation of CTAB-Al-montmorillonite complexes. Spectrochimica Acta Part A, 67: 1030-1036.
  • Zampori. L., Gallo Stampino. P., Cristiani. C., Dotelli. G., Cazzola. P., 2010. Synthesis of organoclays using non-ionic surfactants: Effect of time, temperature and concentration. Applied Clay Science 48; 97–102
  • Zhu, J., He, H., Guo, J., Yang, D., Xıe, X., 2003. Arrangement models of alkylammonium cations in the interlayer of HDTMA+ pillared montmorillonites. Chinese Science Bulletin, 48 (4), 368-372.
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -