Production, Optimization and Partial Characterization of Alkaline Protease from Bacillus subtilis spp. subtilis NRRL B-3384 and B-3387

Production, Optimization and Partial Characterization of Alkaline Protease from Bacillus subtilis spp. subtilis NRRL B-3384 and B-3387

Bacillus subtilis has been a reliable platform for the expression of extracellular proteases for several decades. Although a majority of Bacillus subtilis subspecies express proteases, the amount of secreted enzyme varies depending on the strain and environmental conditions used. Here, two Bacillus subtilis spp. subtilis strains, NRRL B-3384 and NRRL B-3387, from the ARS Culture collection (NRRL), were compared for secreted protease activity. The highest activity was found in strain NRRL B-3384, and proteolysis occurred at temperatures as high as 80°C and across a broad range of pH, with maximum activity at pH 9.0 and 60°C indicating the presence of a thermostable alkaline protease. To our knowledge, this is the first study to evaluate protease production in Bacillus subtilis spp. subtilis strains NRRL B-3384 and B3387 and suggests that NRRL B-3384 may have utility in the production of enzymes for industrial use.

___

  • 1. Jegannathan KR, Nielsen PH. Environmental assessment of enzyme use in industrial production–a literature review. Journal of cleaner production. 2013;42:228-40.
  • 2. Singh S, Bajaj BK. Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solidstate fermentation. Preparative Biochemistry and Biotechnology. 2016;46(7):717-24.
  • 3. Razzaq A, Shamsi S, Ali A, Ali Q, Sajjad M, Malik A, et al. Microbial proteases applications. Frontiers in bioengineering and biotechnology. 2019;7:110.
  • 4. Singhal P, Nigam V, Vidyarthi A. Studies on production, characterization and applications of microbial alkaline proteases. International Journal of Advanced Biotechnology and Research. 2012;3(3):653-69.
  • 5. Sharma KM, Kumar R, Panwar S, Kumar A. Microbial alkaline proteases: Optimization of production parameters and their properties. Journal of Genetic Engineering and Biotechnology. 2017;15(1):115-26.
  • 6. Pihlanto A. Antioxidative peptides derived from milk proteins. International dairy journal. 2006;16(11):1306-14.
  • 7. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiology and molecular biology reviews. 1998;62(3):597-635.
  • 8. Gupta R, Beg Q, Lorenz P. Bacterial alkaline proteases: molecular approaches and industrial applications. Applied microbiology and biotechnology. 2002;59(1):15-32.
  • 9. Contesini FJ, Melo RRd, Sato HH. An overview of Bacillus proteases: from production to application. Critical reviews in biotechnology. 2018;38(3):321-34.
  • 10. Helal M, Amer H, Abdelwahed N, Ghobashy M. Physiological and microbiological studies on production of alkaline protease from locally isolated Bacillus subtilis. Aust J Basic Appl Sci. 2012;6:193- 203.
  • 11. Kalwasińska A, Jankiewicz U, Felföldi T, Burkowska-But A, Swiontek Brzezinska M. Alkaline and halophilic protease production by Bacillus luteus H11 and its potential industrial applications. Food technology and biotechnology. 2018;56(4):553- 61.
  • 12. Joo HS, Chang CS. Oxidant and SDS‐stable alkaline protease from a halo‐tolerant Bacillus clausii I‐52: enhanced production and simple purification. Journal of applied microbiology. 2005;98(2):491-7.
  • 13. Ibrahim KS, Muniyandi J, Pandian SK. Purification and characterization of manganese-dependent alkaline serine protease from Bacillus pumilus TMS55. Journal of microbiology and biotechnology. 2011;21(1):20-7.
  • 14. Baweja M, Tiwari R, Singh PK, Nain L, Shukla P. An alkaline protease from Bacillus pumilus MP 27: functional analysis of its binding model toward its applications as detergent additive. Frontiers in microbiology. 2016;7:1195.
  • 15. Haddar A, Bougatef A, Agrebi R, Sellami-Kamoun A, Nasri M. A novel surfactant-stable alkaline serine-protease from a newly isolated Bacillus mojavensis A21. Purification and characterization. Process Biochemistry. 2009;44(1):29-35.
  • 16. Saggu SK, Mishra PC. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil. PloS one. 2017;12(11):e0188724.
  • 17. Anbu P. Characterization of solvent stable extracellular protease from Bacillus koreensis (BK-P21A). International Journal of Biological Macromolecules. 2013;56:162-8.
  • 18. Singh J, Vohra R, Sahoo DK. Enhanced production of alkaline proteases by Bacillus sphaericus using fed-batch culture. Process Biochemistry. 2004;39(9):1093-101.
  • 19. Moon SH, Parulekar SJ. A parametric study ot protease production in batch and fed‐batch cultures of Bacillus firmus. Biotechnology and bioengineering. 1991;37(5):467-83.
  • 20. Ferreira L, Ramos M, Dordick J, Gil M. Influence of different silica derivatives in the immobilization and stabilization of a Bacillus licheniformis protease (Subtilisin Carlsberg). Journal of Molecular Catalysis B: Enzymatic. 2003;21(4-6):189-99.
  • 21. Yilmaz B, Baltaci MO, Sisecioglu M, Adiguzel A. Thermotolerant alkaline protease enzyme from Bacillus licheniformis A10: purification, characterization, effects of surfactants and organic solvents. Journal of enzyme inhibition and medicinal chemistry. 2016;31(6):1241-7.
  • 22. Pohl S, Harwood CR. Heterologous protein secretion by Bacillus species: from the cradle to the grave. Advances in applied microbiology. 2010;73:1-25.
  • 23. Cui W, Han L, Suo F, Liu Z, Zhou L, Zhou Z. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World Journal of Microbiology and Biotechnology. 2018;34(10):1-19.
  • 24. Abusham RA, Rahman RNZR, Salleh AB, Basri M. Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand. Microbial Cell Factories. 2009;8(1):1-9.
  • 25. ÇOBAN HB. Axinella damicornis süngerinden izole edilen sucul bakterilerin proteaz üretkenliklerinin araştırılması ve üretilen proteaz enziminin kısmi karakterizasyonu. Mediterranean Agricultural Sciences.33(2):223-9.
  • 26. Vaithanomsat P, Malapant T, Apiwattanapiwat W. Silk degumming solution as substrate for microbial protease production. Agriculture and Natural Resources. 2008;42(3):543-51.
  • 27. Prasad R, Abraham TK, Nair AJ. Scale up of production in a bioreactor of a halotolerant protease from moderately halophilic Bacillus sp. isolated from soil. Brazilian Archives of Biology and Technology. 2014;57(3):448-55.
  • 28. VijayAnand S, Hemapriya J, Selvin J, Kiran S. Production and optimization of haloalkaliphilic protease by an extremophile- Halobacterium sp. Js1, isolated from thalassohaline environment. Global J Biotechnol Biochem. 2010;5(1):44-9.
  • 29. Ali N, Ullah N, Qasim M, Rahman H, Khan SN, Sadiq A, et al.Molecular characterization and growth optimization of halotolerant protease producing Bacillus subtilis Strain BLK-1.5 isolated from salt mines of Karak, Pakistan. Extremophiles. 2016;20(4):395- 402.
  • 30. Adinarayana K, Ellaiah P, Prasad DS. Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. Aaps Pharmscitech. 2003;4(4):440-8.
  • 31. Nihalani D, Satyanarayana T. Isolation and characterization of extracellular alkaline enzyme producing bacteria. Indian journal of microbiology New Delhi. 1992;32(4):443-9.
  • 32. Gessesse A, Gashe BA. Production of alkaline protease by an alkaliphilic bacteria isolated from an alkaline soda lake. Biotechnology Letters. 1997;19(5):479-81.
  • 33. Pant G, Prakash A, Pavani J, Bera S, Deviram G, Kumar A, et al. Production, optimization and partial purification of protease from Bacillus subtilis. Journal of Taibah University for Science. 2015;9(1):50-5.
  • 34. Khan I, Gupta P, Vakhlu J. Thermo-alkaliphilic halotolerant detergent compatible protease (s) of Bacillus tequilensis MTCC 9585. African Journal of Microbiology Research. 2011;5(23):3968- 75.
  • 35. Abd Rahman RNZ, Geok LP, Basri M, Salleh AB. Physical factors affecting the production of organic solvent-tolerant protease by Pseudomonas aeruginosa strain K. Bioresource technology. 2005;96(4):429-36.
  • 36. Gouda MK. Optimization and purification of alkaline proteases produced by marine Bacillus sp. MIG newly isolated from Eastern Harbour of Alexandria. Polish Journal of microbiology. 2006;55(2):119.
  • 37. Asha B, Palaniswamy M. Optimization of alkaline protease production by Bacillus cereus FT 1 isolated from soil. J App Pharm Sci. 2018;8(02):119-27.
  • 38. Ahmed M, Rehman R, Siddique A, Hasan F, Ali N, Hameed A. Production, purification and characterization of detergent-stable, halotolerant alkaline protease for eco-friendly application in detergents’ industry. Int J Biosci. 2016;8(2),:47-65.
  • 39. Sharmin S, Hossain MT, Anwar M. Isolation and characterization of a protease producing bacteria Bacillus amovivorus and optimization of some factors of culture conditions for protease production. J Biol Sci. 2005;5(3):358-62.
  • 40. Shumi W, Hossain MT, Anwar M. Proteolytic activity of a bacterial isolate Bacillus fastidiosus den Dooren de Jong. J biol Sci. 2004;4(3):370-4.
  • 41. Chantawannakul P, Oncharoen A, Klanbut K, Chukeatirote E, Lumyong S. Characterization of proteases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in Northern Thailand. Science Asia. 2002;28(4):241-5.
  • 42. Rehman R, Ahmed M, Siddique A, Hasan F, Hameed A, Jamal A. Catalytic role of thermostable metalloproteases from Bacillus subtilis KT004404 as dehairing and destaining agent. Applied biochemistry and biotechnology. 2017;181(1):434-50.
  • 43. Frankena J, Koningstein GM, van Verseveld HW, Stouthamer AH. Effect of different limitations in chemostat cultures on growth and production of exocellular protease by Bacillus licheniformis. Applied microbiology and biotechnology. 1986;24(2):106-12.
  • 44. Nascimento WCAd, Martins MLL. Production and properties of an extracellular protease from thermophilic Bacillus sp. Brazilian journal of microbiology. 2004;35:91-6.
  • 45. Abdulrahman A, Yasser M. Production and some properties of protease produced by Bacillus licheniformis isolated from Tihamet Aseer, Saudi Arabia. Pakistan Journal of Biological Sciences (Pakistan). 2004.
  • 46. Colantuono A, D'Incecco P, Fortina MG, Rosi V, Ricci G, Pellegrino L. Milk substrates influence proteolytic activity of Pseudomonas fluorescens strains. Food Control. 2020;111:107063.
  • 47. Sharma AK, Sharma V, Saxena J, Yadav B, Alam A, Prakash A. Optimization of protease production from bacteria isolated from soil. Appl Res J. 2015;1(7):388-94.
  • 48. Uyar F, Porsuk I, Kizil G, Yilmaz EI. Optimal conditions for production of extracellular protease from newly isolated Bacillus cereus strain CA15. EurAsian Journal of BioSciences. 2011;5.
  • 49. Akhavan Sepahy A, Jabalameli L. Effect of culture conditions on the production of an extracellular protease by Bacillus sp. isolated from soil sample of Lavizan Jungle Park. Enzyme research. 2011;2011.
  • 50. Shafee N, Aris SN, Rahman R, Basri M, Salleh AB. Optimization of environmental and nutritional conditions for the production of alkaline protease by a newly isolated bacterium Bacillus cereus strain 146. J Appl Sci Res. 2005;1(1):1-8.
  • 51. Mehta V, Thumar J, Singh S. Production of alkaline protease from an alkaliphilic actinomycete. Bioresource technology. 2006;97(14):1650-4.
  • 52. Kebabci Ö, Cihangir N. Full Length Research Paper Isolation of protease producing novel Bacillus cereus and detection of optimal conditions. African Journal of Biotechnology. 2011;10(7):1160-4.
  • 53. Yang J-K, Shih L, Tzeng Y-M, Wang S-L. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes☆. Enzyme and microbial technology. 2000;26(5-6):406-13.
  • 54. Priest FG. Extracellular enzyme synthesis in the genus Bacillus. Bacteriological reviews. 1977;41(3):711-53.
  • 55. Prestidge L, Gage V, Spizizen J. Protease activities during the course of sporulation in Bacillus subtilis. Journal of Bacteriology. 1971;107(3):815-23.
  • 56. Strauch MA, Hoch JA. Transition‐state regulators: sentinels of Bacillus subtilis post‐exponential gene expression. Molecular microbiology. 1993;7(3):337-42.
  • 57. Wehrs M, Tanjore D, Eng T, Lievense J, Pray TR, Mukhopadhyay A. Engineering robust production microbes for large-scale cultivation. Trends in microbiology. 2019;27(6):524-37.
  • 58. Yuguo Z, Zhao W, Xiaolong C, Chunhua Z. Production of Extracellular Protease from Crude Substrates with Dregs in an External‐Loop Airlift Bioreactor with Lower Ratio of Height to Diameter. Biotechnology progress. 2001;17(2):273-7.
  • 59. Potumarthi R, Ch S, Jetty A. Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: effect of aeration and agitation regimes. Biochemical Engineering Journal. 2007;34(2):185-92.
  • 60. Beg QK, Sahai V, Gupta R. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochemistry. 2003;39(2):203-9.
  • 61. Moradian F, Khajeh K, Naderi-Manesh H, Ahmadvand R, Sajedi RH, Sadeghizadeh M. Thiol-dependent serine alkaline proteases from Bacillus sp. HR-08 and KR-8102. Applied biochemistry and biotechnology. 2006;134(1):77-87.
  • 62. Farhadian S, Asoodeh A, Lagzian M. Purification, biochemical characterization and structural modeling of a potential htrA-like serine protease from Bacillus subtilis DR8806. Journal of Molecular Catalysis B: Enzymatic. 2015;115:51-8.
  • 63. Cha M, Park JR, Yoon KY. Purification and characterization of an alkaline serine protease producing angiotensin I-converting enzyme inhibitory peptide from Bacillus sp. SS103. Journal of medicinal food. 2005;8(4):462-8.
  • 64. Giri SS, Sukumaran V, Sen SS, Oviya M, Banu BN, Jena PK. Purification and partial characterization of a detergent and oxidizing agent stable alkaline protease from a newly isolated Bacillus subtilis VSG-4 of tropical soil. The Journal of Microbiology. 2011;49(3):455-61.
  • 65. Huang Q, Peng Y, Li X, Wang H, Zhang Y. Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Current microbiology. 2003;46(3):0169-73.
  • 66. Mane R, Bapat M. A study of extracellular alkaline protease from Bacillus subtilis NCIM 2713. 2001.
  • 67. Sigman DS, Mooser G. Chemical studies of enzyme active sites. Annual Review of Biochemistry. 1975;44(1):889-931.
  • 68. de Cassia Pereira J, Giese EC, de Souza Moretti MM, dos Santos Gomes AC, Perrone OM, Boscolo M, et al. Effect of metal ions, chemical agents and organic compounds on lignocellulolytic enzymes activities. Enzyme inhibitors and activators. 2017;29:139- 64.
  • 69. Yossan S, Reungsang A, Yasuda M. Purification and characterization of alkaline protease from Bacillus megaterium isolated from Thai fish sauce fermentation process. Science Asia. 2006;32(4):377-83.
  • 70. Deng A, Wu J, Zhang Y, Zhang G, Wen T. Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresource technology. 2010;101(18):7100-6.
  • 71. Mothe T, Sultanpuram VR. Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacilluscaseinilyticus. 3 Biotech. 2016;6(1):53.