Hyperthermia Efficacy of PEGylated-PLGA Coated Monodisperse Iron Oxide Nanoparticles
Hyperthermia Efficacy of PEGylated-PLGA Coated Monodisperse Iron Oxide Nanoparticles
Magnetic nano hyperthermia (MNH) is a promising technique for the treatment of a variety of malignancies. This non-invasive technique employs magnetic nanoparticles and alternating magnetic fields to generate local heat at the tumor location, which activates cell death pathways. However, the efficacy of MNH is dependent on the physicochemical properties of the magnetic nanoparticles, such as size, size distribution, magnetic properties, biocompatibility, and dispersibility in the medium. In this study, it is aimed to evaluate the heating capacity of poly (lactic-co-glycolic acid)-poly (ethylene glycol) di-block copolymer (PLGA-b-PEG) coated monodisperse iron oxide nanoparticles (IONs) as an effective mediator for MNH application. For this purpose, monodisperse IONs with a narrow size distribution and a mean particle size of 8.6 nm have been synthesized via the thermal decomposition method. The resulting IONs were then coated with the PEGylated-PLGA polymer and homogeneously dispersed in the polymeric matrix, which had a clearly defined spherical shape. Additionally, the specific absorption rate (SAR), reflecting the amount of heat dissipation from the NPs to the surrounding medium, was calculated for different concentrations (10, 5, 2.5, and 1.25 mg/mL) of PEGylated-PLGA-IONs. At 5 mg/mL PEGylated-PLGA-IONs (125 μgFe/mL) were found to have a maximum SAR value of 313 W/g. In conclusion, the homogenous dispersion of IONs in PEGylated-PLGA matrix may be one of the critical parameters to enhance the SAR value for MNH-based cancer therapy.
___
- 1. Albarqi HA, Wong LH, Schumann C, Sabei FY, Korzun T, Li
X, Hansen MN, Dhagat P, Moses AS, Taratula O, Taratula
O. Biocompatible nanoclusters with high heating efficiency
for systemically delivered magnetic hyperthermia. ACS Nano.
2019;13(6):6383-6395. doi:10.1021/acsnano.8b06542.
- 2. Senturk F, Çakmak S, Ozturk GG. Synthesis and characterization
of oleic acid coated magnetic nanoparticles for hyperthermia
applications. Natural and Applied Sciences Journal. 2019;2(2):16-29.
doi:10.38061/idunas.657975.
- 3. Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S,
Shakeri-Zadeh A, Kamrava SK. Nanotechnology in hyperthermia
cancer therapy: From fundamental principles to advanced
applications. J Control Release. 2016;235:205-221. doi:10.1016/j.
jconrel.2016.05.062.
- 4. Senturk F, Kocum IC, Guler Ozturk G. Stepwise implementation of
a low-cost and portable radiofrequency hyperthermia system for in
vitro/in vivo cancer studies. Instrumentation Science & Technology.
2021:1-13. doi:10.1080/10739149.2021.1927075.
- 5. El-Boubbou K. Magnetic iron oxide nanoparticles as drug
carriers: Preparation, conjugation and delivery. Nanomedicine.
2018;13(8):929-952. doi:10.2217/nnm-2017-0320.
- 6. Deatsch AE, Evans BA. Heating efficiency in magnetic nanoparticle
hyperthermia. Journal of Magnetism and Magnetic Materials.
2014;354:163-172. doi:10.1016/j.jmmm.2013.11.006.
- 7. Senturk F. Current advances in glioblastoma therapy, in: N. Duran
(Ed.), Medical and health research theory, method and practice.
Livre De Lyon, Lyon. 2021;81:35-50.
- 8. Senturk F, Cakmak S. Fabrication of curcumin-loaded magnetic
PEGylated-PLGA nanocarriers tagged with GRGDS peptide
for improving anticancer activity. MethodsX. 2023:102229.
doi:10.1016/j.mex.2023.102229.
- 9. Senturk F, Cakmak S, Kocum IC, Gumusderelioglu M, Ozturk
GG. Effects of radiofrequency exposure on in vitro blood-brain
barrier permeability in the presence of magnetic nanoparticles.
Biochem Biophys Res Commun. 2022;597:91-97. doi: 10.1016/j.
bbrc.2022.01.112.
- 10. Senturk F, Cakmak S, Kocum IC, Gumusderelioglu M, Ozturk GG.
GRGDS-conjugated and curcumin-loaded magnetic polymeric
nanoparticles for the hyperthermia treatment of glioblastoma
cells. Colloids and Surfaces A: Physicochemical and Engineering
Aspects. 2021:126648. doi: 10.1016/j.colsurfa.2021.126648.
- 11. Shubitidze F, Kekalo K, Stigliano R, Baker I. Magnetic
nanoparticles with high specific absorption rate of electromagnetic
energy at low field strength for hyperthermia therapy. J Appl Phys.
2015;117(9):094302. doi:10.1063/1.4907915.
- 12. Xie L, Jin W, Chen H, Zhang Q. Superparamagnetic Iron Oxide
Nanoparticles for Cancer Diagnosis and Therapy. J Biomed
Nanotechnol. 2019;15(2):215-416. doi:10.1166/jbn.2019.2678
- 13. Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knuchel R,
Kiessling F, Lammers T. Iron oxide nanoparticles: Diagnostic,
therapeutic and theranostic applications. Adv Drug Deliv Rev.
2019;138:302-325. doi:10.1016/j.addr.2019.01.005.
- 14. Cai J, Miao YQ, Yu BZ, Ma P, Li L, Fan HM. Large-Scale, Facile
Transfer of Oleic Acid-Stabilized Iron Oxide Nanoparticles
to the Aqueous Phase for Biological Applications. Langmuir.
2017;33(7):1662-1669. doi:10.1021/acs.langmuir.6b03360.
- 15. Aguilar AA, Ho MC, Chang E, Carlson KW, Natarajan A, Marciano
T, Bomzon Ze, Patel CB. Permeabilizing cell membranes with
electric fields. Cancers (Basel). 2021;13(9):2283. doi:10.3390/
cancers13092283.
- 16. Senturk F, Bahadir A. Potential effects of electromagnetic fields
used in cancer therapy on SARS-COV-2 infection. in A. Urfalıoglu
and H. Kamalak (Eds.). The clinical implications and evaluations
of pandemic disease (COVID-19) in Turkey. Livre De Lyon, Lyon
2021;78:1-18.
- 17. Szasz A. Thermal and nonthermal effects of radiofrequency
on living state and applications as an adjuvant with radiation
therapy. Journal of Radiation and Cancer Research. 2019;10(1):1.
doi:10.4103/jrcr.jrcr_25_18.
- 18. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang
NM, Hyeon T. Ultra-large-scale syntheses of monodisperse
nanocrystals. Nat Mater. 2004;3(12):891-895. doi: 10.1038/nmat1251.
- 19. Prabhu S, Goda JS, Mutalik S, Mohanty BS, Chaudhari P, Rai S,
Udupa N, Rao BSS. A polymeric temozolomide nanocomposite
against orthotopic glioblastoma xenograft: tumor-specific homing
directed by nestin. Nanoscale. 2017;9(30):10919-10932. doi:10.1039/
c7nr00305f.
- 20. Chun SH, Shin SW, Amornkitbamrung L, Ahn SY, Yuk JS, Sim SJ,
Luo D, Um SH. Polymeric Nanocomplex Encapsulating Iron Oxide
Nanoparticles in Constant Size for Controllable Magnetic Field
Reactivity. Langmuir. 2018;34(43):12827-33.
- 21. Raval N, Maheshwari R, Kalyane D, Youngren-Ortiz SR, Chougule
MB, Tekade RK. Importance of physicochemical characterization
of nanoparticles in pharmaceutical product development. Basic
fundamentals of drug delivery. 2019:369-400. doi:10.1016/B978-0-
12-817909-3.00010-8.
- 22. Ghosh R, Pradhan L, Devi YP, Meena SS, Tewari R, Kumar A,
Sharma S, Gajbhiye NS, Vatsa RK, Pandey BN, Ningthoujam RS.
Induction heating studies of Fe3O4 magnetic nanoparticles capped
with oleic acid and polyethylene glycol for hyperthermia. J Mater
Chem. 2011;21(35). doi:10.1039/c1jm10092k.
- 23. Wildeboer R, Southern P, Pankhurst Q. On the reliable measurement
of specific absorption rates and intrinsic loss parameters in
magnetic hyperthermia materials. Journal of Physics D: Applied
Physics. 2014;47(49):495003. doi:10.1088/0022-3727/47/49/495003.
- 24. Ruggiero MR, Geninatti Crich S, Sieni E, Sgarbossa P, Cavallari E,
Stefania R, Dughiero F, Aime S. Iron oxide/PLGA nanoparticles
for magnetically controlled drug release. International Journal of
Applied Electromagnetics and Mechanics. 2017;53(S1):S53-S60.
doi:10.3233/JAE-162246.
- 25. Eivazzadeh-Keihan R, Asgharnasl S, Aliabadi HAM, Tahmasebi
B, Radinekiyan F, Maleki A, Bahreinizad H, Mahdavi M, Alavijeh
MS, Saber R. Magnetic graphene oxide–lignin nanobiocomposite:
a novel, eco-friendly and stable nanostructure suitable for
hyperthermia in cancer therapy. RSC advances. 2022;12(6):3593-
3601. doi:10.1039/D1RA08640E.
- 26. Kossatz S, Ludwig R, Dähring H, Ettelt V, Rimkus G, Marciello
M, Salas G, Patel V, Teran FJ, Hilger I. High therapeutic efficiency
of magnetic hyperthermia in xenograft models achieved with
moderate temperature dosages in the tumor area. Pharm Res.
2014;31(12):3274-88. doi:10.1007/s11095-014-1417-0
- 27. Unni M, Uhl AM, Savliwala S, Savitzky BH, Dhavalikar R,
Garraud N, Arnold DP, Kourkoutis LF, Andrew JS, Rinaldi C.
Thermal Decomposition Synthesis of Iron Oxide Nanoparticles
with Diminished Magnetic Dead Layer by Controlled Addition
of Oxygen. ACS Nano. 2017;11(2):2284-303. doi:10.1021/
acsnano.7b00609.
- 28. Dallet L, Stanicki D, Voisin P, Miraux S, Ribot EJ. Micron-sized
iron oxide particles for both MRI cell tracking and magnetic fluid
hyperthermia treatment. Sci Rep. 2021;11(1):1-13. doi:10.1038/
s41598-021-82095-6.
- 29. Senturk F, Cakmak S, Gumusderelioglu M, Ozturk GG. Hydrolytic
instability and low-loading levels of temozolomide to magnetic
PLGA nanoparticles remain challenging against glioblastoma
therapy. Journal of Drug Delivery Science and Technology.
2022;68:103101. doi:10.1016/j.jddst.2022.103101.
- 30. Spivakov A, Lin C-R, Chang Y-C, Wang C-C, Sarychev D. Magnetic
and Magneto-Optical Oroperties of Iron Oxides Nanoparticles
Synthesized under Atmospheric Pressure. Nanomaterials.
2020;10(9):1888. doi:10.3390/nano10091888
- 31. Smolensky ED, Park H-YE, Zhou Y, Rolla GA, Marjańska M, Botta
M, Pierre VC. Scaling laws at the nanosize: the effect of particle
size and shape on the magnetism and relaxivity of iron oxide
nanoparticle contrast agents. Journal of Materials Chemistry B.
2013;1(22):2818-28. doi:10.1039/C3TB00369H.
- 32. Wu K, Su D, Liu J, Saha R, Wang J-P. Magnetic nanoparticles in
nanomedicine: A review of recent advances. Nanotechnology.
2019;30(50):502003. doi:10.1088/1361-6528/ab4241.
- 33. Ramírez-Morales MA, Goldt AE, Kalachikova PM, Ramirez B JA,
Suzuki M, Zhigach AN, Ben Salah A, Shurygina LI, Shandakov SD,
Zatsepin T. Albumin stabilized Fe@ C core–shell nanoparticles
as candidates for magnetic hyperthermia therapy. Nanomaterials.
2022;12(16):2869. doi:10.3390/nano12162869.
- 34. Liu X, Zhang Y, Wang Y, Zhu W, Li G, Ma X, Zhang Y, Chen
S, Tiwari S, Shi K. Comprehensive understanding of magnetic
hyperthermia for improving antitumor therapeutic efficacy.
Theranostics. 2020;10(8):3793. doi:10.7150/thno.40805.
- 35. Kim J-w, Wang J, Kim H, Bae S. Concentration-dependent oscillation
of specific loss power in magnetic nanofluid hyperthermia. Sci Rep.
2021;11(1):1-10. doi:10.1038/s41598-020-79871-1.