Orografik (yere-yakın) alanlar üzerinde zamanla hızlı değişen 3 boyutlu rüzgar girdapları ve bunların uçuş güvenliğine etkileri

Bu çalışmada Wind-FLOWER sayısal modelleme yeteneğinin uygulamaları ile coğrafi bölgelerde belirlenmiş, gerçek topoğrafya bilgileri kullanarak, dağlık alanlarda yere-yakın (orografik) hava akışlarının sayısal olarak modellemesi yapılmıştır. Sayısal modelleme yeteneğinin geliştirmiş olduğu benzetim sonuçları, yere-yakın hava akışlarının içerdiği, zamanla hızlı değişen girdap oluşumlarında 3 boyutlu özelliklerin önemini kesinlikle göstermektedir. Sayısal modelleme yeteneğinin uygulamalarında, gerçek “Sayısal Yükseklik Modeli (SYM)” bilgilerini içeren topoğrafik sayısal yükseklik verileri kullanılmış ve bu sayısal yükseklik verileri, Wind- FLOWER modelinin uygulamaları için gereken yer-yüzeyi verilerini oluşturmuştur. Modelin uygulaması kapsamında ön-işlemci (pre-processor) ve ard-işlemci (post-processor) yazılım derlemleri geliştirilmiştir. Önişlemci ve ard-işlemci yazılım derlemleri ile birlikte uygulanması gereken ve sayısal modelin kolaylıkla kullanılmasını sağlayan bir “Görüntüleme Kullanıcı Arayüzü (GKA)” [Graphical User Interface (GUI)] yazılım derlemi de oluşturulmuş ve uygulanmıştır.

The simulation of time-dependent three dimensions (3D) wind vortex which comes into being on orography areas and using of it in the increasing flight safety

In this study, it is studied that the augmented Wind-FLOWER numerical modelling skill’s applications and land-surface (orographic) air flows’ numerical modelling on mountain areas by using real topography datas which are defined on geographic areas. This numerical modelling skill’s simulation results show that 3-D specifications are very important for being of time-dependant quick-change vortex which are included by landsurface air flows. In the numerical modelling skill’s applications topographical numerical altitude datas that include informations and datas of really “Numerical Altitude Model (NAM)” are used. These real topographic datas, used in application part, are examinated very tightly and seperated same size topographic datas before using as initial/beginning datas for Wind-FLOWER numerical modelling. Then, these topographical datas are used as land-surface data for modelling applications. This modelling applications include a pro-precessor and a post-processor. The pro-precessor runs land-surface numerical datas and uses them in numerical modelling applications. The post-processor constitutes 2-D and 3-D images by using the numerical modelling applications’ datas of land-surface air flow and determined vortex formations and vortex-density distrubitions. Furthermore, a “Graphical User Interface (GUI)” is constituted which is required to work with pre-processor and postprocessor and is practiced for easy usage of numerical modelling.

___

  • [1] Eraslan, A. H., Erhan, İ. H., Lin, W. L. 1981. A Fast Transient, Two-Dimensional, Discrte element Rainfall-Runoff Model, For Channelized, composite Subsurface-Surface Flows In Valleys Steep Terrain, Procedings of the International Symposium on Rainfall-Runoff Modeling held, Mississippi State University, Mississippi State, Mississippi, USA.
  • [2] Eraslan, A. H., Ahmadi, G. 1993. A Computer Code For Analyzing Transient Three-Dimensional Rapid Granular Flows In Complex Geometries. Computer Fluids, Vol. 22, No. 1, pp.25-50, USA.
  • [3] Eraslan, A. H. 1995. Computationly Challanging Problems in Fast-Transient Multiphase Convective Heat Transfer. American Society of Mechanical Engineering, Energy&Enviromental Expo 95, Housten, Texas.
  • [4] Huang Y., Ramaswamy V., Huang X., Fu Q., Bardeen C. 2007. A strict test in climate modeling with spectrally resolved radiances: GCM simulation versus AIRS observations, Geophysıcal Research Letters
  • [5] Eraslan, A. H., Lin, W. L., ve Sharp, R. D. 1983. FLOWER: A Computer Code For Simulating Three-Dimensional Flow, Temperature And Salinity Conditions in Rivers, Estuaries and Coastal Regions. Rapor No: NUREG/CR-3172, U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Washington, D. C., ve Rapor No.: ORNL/TM-8401, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
  • [6] Eraslan, H. A. 2006. Turbulence: Proper Reynolds Transport Theorem Versus Formal Reynolds Decomposition Hypothesis. J. Fluid Mech. (under consideration for publication).
  • [7] Eraslan, H. A. 2006. Discretal Theory of Fluid Flow Physics: Toward a Universal Computational Algorithm. Journal of Computational Physics (under consideration for publication).
  • [8] Jacob, G., David G. Long, 1994. Mivergence Models for the Near-Surface Oceanic Vorticity and Divergence, Brigham Young University.
  • [9] Terra, R., 2002 The impact of orographic variance on boundary layer clouds and its parameterization for climate models, University of California .
  • [10] Perlin, N., R.M.Samelson, D. B. Chelton, 2004. Scatterometer and Model Wind and Wind Stress in the Oregon–Northern California Coastal Zone, Oregon State University.
  • [11] John, F. S., 2000. Low-Level Topographic Drag in Atmospheric Flows, Post outline,University of Victoria
  • [12] Olafsson, H.,2004 Multi-scale Orographic Forcing of the Atmosphere Leading to an Erosion Event, Haskoli Island University.
  • [13] Dunja, D., Stiperski I., Tudor M., 2005. Testing The New Sub-Grid Scale Orography Represantation on Bura Cases, Croatian Meteorological and Hydrological Service.
  • [14] Lindeman, J., Boybeyı Z., 2006. Orographic Vortex Shedding Comparisons using Different Nested Grid Options in ARW WRF, George Mason University.
  • [15] Buss S. , 2006. Orographic Effects, Post Outline.
  • [16] Yağan, Y., İpek F., Çamalan İ., 2004.Low Level Wind Shear Alert System, Meteosat Second Generation, Postnote
  • [17] Tutar, M. , Celik I. , Yavuz I. , 2006. Modellıng Of Effect Of Inflow Turbulence On Large Eddy Simulatıon Of Bluff Body Flows, Mathematical and Computational Applications.