Elektromekanik ürün tasarımında anlaşmazlık tespit ve çözümü için bir karar destek sistemi

Günümüz ürünleri birden fazla teknolojiyi kapsayan, elektronik ve mekanik gibi farklı disiplinlerin kesişiminden oluşan ürünlerdir. Bu disiplinler arasındaki etkileşimler, tasarım ve üretim aşamasında çeşitli kısıtlamalardan dolayı anlaşmazlıklara sebep olabilir. Ortaya çıkan anlaşmazlıklara etkin çözüm bulunması üretim maliyetini düşürecek, ürün kalitesini artıracak, ürün tasarım ve geliştirme sürecini azaltacaktır. Bu makale elektromekanik ürünlerin anahtar karakteristiklerine dayalı olarak çalışan bir ürün geliştirme sistemini tanıtmaktadır. Sistem elektromekanik ürünlerin belirlenen kısıtlamalar dahilinde tasarım ve üretimini geliştirmek için elektronik tasarım ile mekanik tasarımı birleştirmeyi amaçlamaktadır. Bu amaçla CAD ile entegre edilmiş DELPHİ tabanlı bir sistem geliştirilmiştir. Geliştirilen sistem bir elektromekanik ürün olan robot üzerinde test edilmiştir. Sonuçlar göstermiştir ki bu sistem elektronik ve mekanik alanın kesişimini içeren ürünlerin tasarımında kısıtlamalara dayalı anlaşmazlıkların tespit edilmesini, bu anlaşmazlıkların etkin çözümünü ve ürün tasarım sürecinin azaltılmasını sağlamakta ve tasarım süreci boyunca tasarım ekiplerine yardımcı olmaktadır.

A decision support system for conflict detection and resolution in interdisciplinary product design

Today's products are interdisciplinary and they include more than one technology such as electronics and mechanics. Interactions between different disciplines during the design and manufacturing of these products may cause conflicts due to discipline-based constraints. Dealing with these conflicts will effectively reduce product cost, and increase the quality, and shorten the product lead-time. In this research a product development system based on key characteristics of complex products have been developed. It aims to achieve the integration of mechanical and electronics product design subject to a set of given constraints. The system has been developed by using Delphi based environment integrated with a CAD system. The system has been tested on a small walking robot. The results show that it can serve to detect conflicts caused by constraints violation, and provides effective resolution of those conflicts that lead to reductions in product development time and cost by supporting design teams.

Kaynakça

[1] Tseng CJ, Abdalla H, (2004) “A human computer system for collaborative design (HCSCD)” Journal of Materials Processing Technology, 155: 1964-1971 Part 2, Sp. Iss. SI NOV 30 2004

[2] Farr, R., Gayretli, A., Hodgson, A. and Gindy, N (2003) “Virtual Teams and Electromechanical Product Design” accepted for publication in International Journal of Advanced Manufacturing Systems, March 2003

[3] Gayretli, A and Abdalla, H, (1999) " A Prototype Constraint-Based System for The Automation and Optimisation of Machining Processes", Journal of Manufacture-Part B, Vol. 213, pp. 655- 676

[4] Bowen, J, (1997) “ Using dependency records to generate design co-ordination advice in a constraint-based approach to concurrent engineering”, Computers in Industry, Vol. 33, pp.191-199

[5] Hayes, C C and Su, C S, (1995) “Using a Manufacturing Constraint Network to Identify Costcritical Areas of Designs” Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Vol.9, pp. 73-87

[6] Yoshimura, M and Yoshikawa, K, (1998) “Synergy Effects of Sharing Knowledge during Cooperative Product Design” Concurrent Engineering: Research and Applications, Vol. 6, No. 1, pp. 7-14

[7] Pena-Mora, F., Hussein, K., Vadhavkar, S. and Benjamin, K (2000) “CAIRO: a concurrent engineering meeting environment for virtual design teams” Artificial Intelligence in Engineering, Vol. 14, pp. 203-219

[8] Balasubramanian, S. and Norrie, D., H., (1996) " A Multi-agent Architecture for Concurrent Design, Process Planning, Routing, and Scheduling", Concurrent Engineering: Research and Application, Vol.4, No.1, pp. 7-15

[9] D’Ambrosio, J, Darr, T, and Birmingham, W., (1996) “Hierarchical Concurrent Engineering in a Multiagent Framework” Concurrent Engineering: Research and Applications, Vol.4, No.1, pp. 47-57

[10] Wong, STC (1997) “Coping with conflict in cooperative knowledge-based systems” IEEE Transactions on Systems, Man and Cybernetics, Vol. 27, No.1, pp. 57-72

[11] Cooper, S and TalebBendiab, A (1998) “CONCENSUS: multi-party negotiation support for conflict resolution in concurrent engineering design” Journal of Intelligent Manufacturing, Vol. 9, No.2, pp. 155-159

[12] Barber, KS, McKay, RM, Goel, A, Han, DC, Kim, J, Liu, TH and Martin, CE (2000) “Sensible Agents: The distributed architecture and testbed” IEICE Transactions on Communications, Vol. E83B, No.5, pp. 951-960

Kaynak Göster