Bir İnsansız Hava Aracı Pervanesi İçin Açık Kaynaklı Bir Aerodinamik Şekil Optimizasyon Uygulaması

Askeri, tarım ve özel amaçla kullanılan insansız hava araçları günümüz şartlarında insanlı hava araçlarına göre daha popüler ve fonksiyonel olmaktadır. İnsansız hava araçları genellikle pervane tahrikli bir itki sistemi kullanmaktadır. Bu sistemlerin performanslarının iyileştirilmesi için aerodinamik şekil optimizasyonu hayati önem taşımaktadır. Bu nedenle bu çalışmada, bir açık kaynaklı, Hesaplamalı Akışkanlar Dinamiği (HAD) tabanlı bir optimizasyon döngüsü (HAD çözücüsü, optimizasyon çözücüsü, serbest şekil değiştirme aracı ve çözüm ağı üreticisi birlikte çalışmakta) tasarlanarak, bir generik insansız hava aracı pervanesi üzerinde test edilmiştir. Tasarlanan bu açık kaynaklı şekil optimizasyonu döngüsünün oldukça etkili çalıştığı görülmüş ve sonucunda söz konusu pervanenin yararlılık katsayısı % 40 iyileştirilmiştir.

An Open-Source Aerodynamic Shape Optimization Application for an Unmanned Aerial Vehicle (UAV) Propeller

The Unmanned Aerial Vehicles (UAVs) have become more popular and functional for today’s needs in comparison to the conventional aircrafts for military, agriculture and private purposes. Generally, these vehicles are using propeller based propulsion systems. Thus, aerodynamic shape optimization is a vital process to improve their performance. Accordingly, in the present study, a Computational Fluid Dynamics (CFD) based open-source shape optimization framework (combined use of a CFD solver, Optimization solver, Free-Form Deformation (FFD) tool and Mesh Generator utility) is designed to optimize the shape of a generic UAV propeller. As a result, the open-source shape optimization framework here woks quite efficiently and the Figure of Merit (FM) of the propeller has been improved by around 40 %.

___

  • [1] B. Mohammadi, O. Pironneau, Applied shape optimization for fluids, Oxford University Press, 2009.
  • [2] C. Lui, B. Weiyang, X. Dong, Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm, Int. Journal of Heat and Mass Transfer 111, 65-82 (2017).
  • [3] H. Kim C.A. Yang, A new surface modification approach for CFD-based hull form optimization, Journal of Hydrodynamics 22, 503-508 (2010).
  • [4] M. Horvat, L. Bruno, S. Khris, L. Raffaele, Aerodynamic shape optimization of barriers for windblown sand mitigation using CFD analysis, Journal of Wind Engineering & Industrial Aerodynamics 197, 104058 (2020).
  • [5] J. Sodja, D. Stadler, T. Kosel, Computational Fluid Dynamics Analysis of an optimized load-distribution propeller, Journal of Aircraft 49(3), 955-961 (2012).
  • [6] J. D. Hoyos, J. H. Jimenez and P. Alvarado, “Improvement of electric aircraft endurance through propeller optimization via BEM-CFD methodology,” 2nd Int. Conf. On Trends in Mechanical and Aerospace, Washington, United States, September 25-27, 2020.
  • [7] J. L. Hess and W.O. Valarezo, Calculation of steady flow about propeller using a surface panel method, Journal of Propulsion 1(6), 470-476 (1985).
  • [8] C.C. Smith, N. R. Garcia, O. Sigmund and C. S. Andreasen, Aerodynamic shape optimization of aircraft wings using panel method, AIAA Journal 58(9), 3765-3776 (2020).
  • [9] N. Ashton, V. Skaperdas, Verification and validation of OpenFOAM for high-lift aircraft flows, Journal of Aircraft 56(4), 1641-1657 (2019).
  • [10] D. Sandeep, Y.P. Ravitej, S. Khot, R Ravikumar, Abhinandan, N. Kumar, S.B. Karthik and Veerachari, ‘’CFD simulation of transonic flow past NACA 0012 aerofoil,’’ In AIP Conference Proceedings 2316(1), pp. 020013 (2021).
  • [11] S. Abuhanieh, B. Bicer, M. Sahin, “A validation for the OPENFOAM-HISA solver for drag prediction” 32nd Int. Conf. on Parallel CFD, Nice, France, May 17-19, 2021.
  • [12] B. Bicer, C.A.S. Metin, B. Celik, “An Investigation on shock wave boundary layer interactions over awing via OpenFOAM” 7th OpenFOAM Conference, Duisburg, Germany, July 23-26, 2019.
  • [13] G. Droandi, G. Gibertini, Aerodynamic shape optimisation of a proprotor and its validation by means of CFD and experiments, The Aeronautical Journal 119, 1223-1251 (2015).
  • [14] A.V. Lysenkov, “The propeller optimization with the use of CFD” Int. Conf. On the Methods of Aerophysical Research, Novosibirsk, Russia, August 13-19, 2018.
  • [15] H.I. Kwon, S. Yi and S. Choi, Design of efficient propellers using variable-fidelity aerodynamic analysis and multilevel optimization, Journal of Propolsion and Power 31(4),1057-1072 (2015).
  • [16] J. Morgado, M. Abdollahzadeh, M.A.R. Silvestre, J.C. Pascoa, High altitude propeller design and analysis, Aerospace Science and Technology 45, 398-407 (2015).
  • [17] "OpenFOAM Web Page," [Online]. Available: http:// openfoam.com. [Accessed: August 11 2021].
  • [18] "DAKOTA Web Page," [Online]. Available: https:// dakota.sandia.gov/ [Accessed: August, 11, 2021].
  • [19] "MiMMO Web Page," [Online]. Available: https:// optimad.github.io/mimmo. [Accessed: August, 11, 2021].
  • [20] A. Soydan, H. Sahin, B. Bicer, S. Sariozkan, M. Sahin, “Experimental and Numerical Investigation of Co-Axial Rotor Interaction to Thrust,” Progress in Computational Fluid Dynamics, An Int. Journal, 2021 (in-press).
  • [21] C.C. Xia, Y.J. Gou, S.H. Li, W.F. Chen and C. Shao, “An Automatic Aerodynamic Shape Optimisation Framework Based on DAKOTA,” IOP Conf. Series:Materials Science and Engineering 408, Dalian, China, July 1-3, 2018. pp. 012021.
  • [22] T. A. Johansen, “Optimization of a Low Reynold`s Number 2-D Inflatable Airfoil Section” Utah State University, Master Thesis, 2011.