Ay Albedosu Etkisinde Güneş’e Yönelme Vektörü Kestirimi

Uzay araçları veya üzerindeki aletler görevlerini başarılı bir şekilde sürdürmek ve tamamlamak için belirli yönlere veya noktalara yönlendirilmektedirler. Güneş sensörleri, güneş sistemindeki hem gezegen etrafında seyreden uydularda hem de gezegenler arası uzay görevlerinde kullanılabildiğinden tercih edilmektedirler. Bunlardan birçoğu yalnızca güneşten gelen radyasyonu değil yakınındaki herhangi bir objenin albedosunu da ölçmektedir. Bu ölçümlerin, yönelim belirleme ve kontrol bilgisayarında, albedo modelinin dikkate alınmadan kullanılması durumunda hataya sebep olduğu bilinmektedir. Bu çalışmada, Ay albedosunun güneş sensörü ve güneşe yönelme vektörü kestirimi üzerindeki etkisi farklı benzetimler üzerinden değerlendirilmiştir.

Sun-Direction Estimation under the Effect of Lunar Albedo

Spacecraft or the instruments are directed to certain directions or points in order to successfully complete their mission. Solar sensors are commonly used as they are capable of being used in planetary or interplanetary space missions in the solar system. Mostly, these instruments sense not only the radiation from the sun but also the albedo of any nearby object. These measurements are known to cause erroneous outputs in the attitude and control system when used without considering the albedo model. In this study, the effect of the lunar albedo on the sun sensor and sun direction estimation is evaluated under different simulation conditions.

___

  • [1] J. C. Crusan et al., “Deep space gateway concept: Extending human presence into cislunar space” in Proceedings, IEEE Aerospace Conference, IEEE, Big Sky, MT, USA, March 3-10, 2018. pp. 1–10.
  • [2] H. M. Brown et al., Resource potential of lunar permanently shadowed regions, Icarus 377, 114874 (2022).
  • [3] A. Rubinsztejn and R. Sood, “Chaining Moon-to-Moon Trajectories Using Network Analysis”, in AIAA SciTech Forum and Exposition, San Diego, CA, January 2-7, 2022.
  • [4] “Lunar Flashlight Mission Information.” [Online]. Available: https://www.jpl.nasa.gov/missions/lunar-flashlight. [Accessed: March 6, 2022].
  • [5] P. C. Lai, D. C. Sternberg, R. J. Haw, E. D. Gustafson, P. C. Adell, and J. D. Baker, Lunar Flashlight CubeSat GNC system development, Acta Astronautica 173, 425–441 (2020).
  • [6] A. Colagrossi, V. Pesce, L. Bucci, F. Colombi, and M. Lavagna, Guidance, navigation and control for 6DOF rendezvous in Cislunar multi-body environment, Aerospace Science and Technology 114, 106751 (2021).
  • [7] R. Zanetti and C. N. D’Souza, Observability Analysis and Filter Design for the Orion Earth-Moon Attitude Filter, Journal of Guidance, Control, and Dynamics, 39(2), 201–213 (2016).
  • [8] J. Cha, S. Heo, and C. G. Park, “Coarse alignment of lunar exploration rover using accelerometer and sun sensor”, in International Conference on Control, Automation and Systems, eju, Korea (South), IEEE October 18-21, 2017. pp. 465–470.
  • [9] X. Wang, C. Xu, Y. Huo, Y. Wan, Y. Liu, and J. Fu, Influence of Indirect Solar Irradiance on Satellite Observation, IEEE Access 9, 163893–163905 (2021).
  • [10] D. A. Glenar, T. J. Stubbs, E. W. Schwieterman, T. D. Robinson, and T. A. Livengood, Earthshine as an illumination source at the Moon, Icarus 321, 841–856 (2019).
  • [11] H. L. Fisher, K. L. Musser, and M. D. Shuster, Coarse attitude determination from earth albedo measurements, IEEE Transactions on Aerospace and Electronic Systems 29(1), 22–26 (1993).
  • [12] P. Appel, Attitude estimation from magnetometer and earth-albedo-corrected coarse sun sensor measurements, Acta Astronautica 56(1–2), 115–126 (2005).
  • [13] D. Bhanderi, “Modeling Earth Albedo Currents On Sun Sensors for Improved Vector Observation,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, August 21-24, 2006.
  • [14] L. Baroni, Attitude determination by unscented Kalman filter and solar panels as sun sensor, The European Physical Journal Special Topics 229(8), 1501–1506 (2020).
  • [15] D. Cilden-Guler, H. Schaub, C. Hajiyev, and Z. Kaymaz, Attitude Estimation with Albedo Interference on Sun Sensor Measurements, Journal of Spacecraft and Rockets 58(1), 148–163 (2021).
  • [16] S. N. Sozen, M. Gokce, C. Yavuzyilmaz, F. Gulmammadov, and H. E. Soken, “Measurement correction of a set of analog sun sensors via neural network”, 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace), IEEE, Naples, Italy, June 23-25, 2021. pp. 1-6.
  • [17] L. Frezza, F. Santoni, and F. Piergentili, Sun direction determination improvement by albedo input estimation combining photodiodes and magnetometer, Acta Astronautica 190, 134–148 (2022).
  • [18] T. Oikawa, J. Bröhan, G. Dubernet, and K. Yoshida, “Rover orientation estimation using sun sensors for lunar and planetary exploration,” in 69th International Astronautical Congress (IAC), Bremen, Germany, October 1-5, 2018.
  • [19] H. Schaub and J. L. Junkins, Stereographic orientation parameters for attitude dynamics: A generalization of the Rodrigues parameters, The Journal of the Astronautical Sciences 44(1), 1–19 (1996).
  • [20] H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems, Second Edition. Reston, VA: American Institute of Aeronautics and Astronautics, 2009.
  • [21] P. C. Hughes, Spacecraft Attitude Dynamics, Mineola, New York: Dover Publications, 2004.
  • [22] T. W. Flatley and W. A. Moore, “An Earth Albedo Model: A Mathematical Model for the Radiant Energy Input to an Orbiting Spacecraft Due to the Diffuse Reflectance of Solar Radiation From the Earth Below”, Technical Memorandum 104596, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD, 1994.[Online].Available:https://ntrs.nasa.gov/api/citations/19940020024/downloads/19940020024.pdf [Accessed: March 6, 2022].
  • [23] X. Li et al., “Condition of Solar Radiation on the Moon” in Moon, July 2012, Berlin, Heidelberg, Springer, pp. 347–365.
  • [24] D. E. Smith et al., The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission, Space Science Review 150(1), 209–241 (2009).
  • [25] P. G. Lucey et al., The global albedo of the Moon at 1064 nm from LOLA, Journal of Geophysical Research: Planets 119(7), 1665–1679 (2014).
  • [26] M. Lemelin et al., Improved calibration of reflectance data from the LRO Lunar Orbiter Laser Altimeter (LOLA) and implications for space weathering, Icarus, 273, 315–328 (2016).
  • [27] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), IEEE, Lake Louise, AB, Canada, October o4, 2000. pp. 153–158.
  • [28] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter to nonlinear systems,” in Proceedings of Signal Processing, Sensor Fusion, and Target Recognition VI, 1997, pp.3068.
  • [29] D. Cilden-Guler, M. Raitoharju, R. Piche, and C. Hajiyev, Nanosatellite attitude estimation using Kalman-type filters with non-Gaussian noise, Aerospace Science and Technology 92, 66–76 (2019).
  • [30] C. H. Acton, Ancillary data services of NASA’s Navigation and Ancillary Information Facility, Planetary and Space Science 44(1), 65–70 (1996).
  • [31] M. C. Margenet, H. Schaub, and S. Piggott, “Modular attitude guidance development using the basilisk software framework,” in AIAA Space and Astronautics Forum and Exposition, Long Beach, California, September 13 – 16, 2016.
  • [32] P. W. Kenneally, S. Piggott, and H. Schaub, Basilisk: A Flexible, Scalable and Modular Astrodynamics Simulation Framework, Journal of Aerospace Information Systems 17(9), pp. 496–507 (2020).
  • [33] Autonomous Vehicle Systems (AVS) Laboratory, “Welcome to Basilisk: an Astrodynamics Simulation Framework — Basilisk 2.1.1 documentation.” [Online]. Available: http://hanspeterschaub.info/basilisk/index.html. [Accessed: March 11, 2022].
  • [34] J. C. Springmann and J. W. Cutler, Satellite Attitude Determination with Low-Cost Sensors, University of Michigan, 2013.
  • [35] J. C. Springmann, A. J. Sloboda, A. T. Klesh, M. W. Bennett, and J. W. Cutler, The attitude determination system of the RAX satellite, Acta Astronautica 75, 120–135 (2012).