Yem katkısı selülaz enzimlerini üreten termofilik bacillus suşlarının izolasyonu ve enzimlerin kısmi karakterizasyonu

Bu çalışmada, Düziçi sınırları içerisinde bulunan Haruniye Kaplıcasından toplanan topraknumunelerinden üç adet termofilik Bacillus sp. izolasyonu gerçekleştirilmiştir. Bakteriler sırasıylaBacillus sp. HG1, HG 2 ve HG3 olarak isimlendirilmişlerdir. Selülaz üretimi, üreme periyodununbaşlangıcından itibaren HG1 ve HG2 izolatları için 72. saatte, HG3 izolatı için ise 24. saattemaksimum düzeye çıkmıştır. HG 1 ve HG2 selülazları optimum aktivite ler ini 60°Cde gösterirken,HG3 selülazı 70°Cde göstermiştir. Bununla birlikte HG 1 ve H G 3 selülazları optimumaktivitelerini pH 5.0de gösterirken, HG2 selülazı pH 4.0de göstermiştir. Her üç enzim de60°Cde 30 dakika muhafaza edildiklerinde aktivitelerinin tamamını korurken, daha yükseksıcaklık değerlerinde 30 dk inkübasyon sonucunda aktivite lerini kaybetmeye başlamışlardır. HG 1,HG2 ve HG 3 enzimlerine ait spesifik aktiviteler 55°Cde sırasıyla 3 4. 1 , 67 .8 ve 1 1 2.3 U/mg olarakbelirlenmiştir.

Isolation of feed additive cellulase producing thermophilic bacillus strains and partial characterization of the enzymes

In the present study, we isolated three thermophilic Bacillus strains from the soil samples collectedfrom the Haruniye Thermal Spring located in Düziçi. The isolates were entitled as Bacillus sp.HG1, HG2, and HG 3 , respectively. The maximum cellulase productions were revealed at 72ndhour of incubation period for HG 1 and HG2 strain, and at 24th hour of incubation period for HG3strain, re spectively. The optimum enzyme activity was observed at 7 0°C for HG3 cellulase ,whereas at 60°C for HG1 and HG2 cellulases . On the other hand, optimum pH value for HG2cellulase was 4.0, whereas 5 .0 for HG 1 and HG 3 cellulases . All enzymes protected their activitiesafter pre -incubation at 60°C for 30 min, but they begin to decrease after pre - incubation at highertemperature values. The specific activities of HG 1, HG2, and HG 3 cellulases were 34.1, 67.8 and112.3 U/mg at 55°C, respectively.

___

  • Acharya, S., Chaudhary, A. 2012. Optimization of fermentation conditions for cellulases production by Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from Indian hot spring. Brazilian Archives of Biology and Technology, 55(4): 497 - 503.
  • Annamalai, N., Rajeswari, M.V., Ela yaraja, S., Balasubramanian, T. 2013. Thermostable, haloalkaline cellulase from Bacillus halodurans CAS1 by conversion of lignocellulosic wastes. Carbohydrate Polymers , 94: 409-415.
  • Azzaz, H.H. 2009. Effect of cellulytic enzymes addition to diets on the productive performance of lactating goats. M.Sc. Thesis, Faculty of Agriculture, Cairo University, Egypt. Bajaj, B.K., Pangotra, H., Wani, A.M., Sharma, P., Sharma, A. 2009. Partial purification and characterization of a highly thermo- stable and pH stable endoglucanase from a newly isolated Bacillus strain M- 9. Indian Journal of Chem ical Technology, 16: 382-38 7.
  • Bischoff, K.M., Rooney, A.P., Li, X., Liu, S., Hughes, S.R. 2006. Purification and characterization of a family 5 endoglucanase from a moderately thermophilic strain of Bacillus licheniformis . Biotechnology Letters , 28: 1761 – 1765.
  • Burhan, A., Nisa, U., Gokhan, C., O mer, C., Ashabil, A., Osman, G. 2003. Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT -6. Process Biochemistry, 38: 1397 - 1403. Deka, D., Bhargavi, P., Sharma, A., Goyal, D., Jawed, M., Goyal, A. 2011.
  • Enhancement of cellulase activity from a new strain of Bacillus subtilis by medium optimization and analysis with various cellulosic substrates. Enzyme Research, Volume 2011: Article ID: 151656, DOI: 10.4061/2011/151656.
  • Demirkan, E. 2010. Production, purification, and characterization of α-amylase by Bacillus subtilis and its mutant derivates. Turkish Journal of Biology, 35: 705 – 712.
  • Gado, H.M., Metwally, H.M., Soliman, H., Ba siony, A.Z.L., El- Galil, E.R. 2007. Enzymatic treatments of bagasse by different sources of cellulase enzymes. In: The 11 th World Conference on Animal Nutrition, 10: 607 -613.
  • Gaur, D., Jain, P.K., Bajpai, V. 2012. Production of extracellular α- amylase by thermophilic Bacillus sp. isolated from arid and semi-arid region of Rajasthan, India. Journal of Microbiology and Biotechnology Research, 2(5): 675 -684.
  • Hakamada, Y., Koike, K., Yoshimatsu, T., Mori, H., Kobayashi, T., Ito, S. 1997. Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSM-S237. Extremophiles , 1: 151 - 156.
  • Horikoshi, K. 1996. Alkaliphiles – from an industrial point of view. FEMS Microbiology Reviews , 36: 1407 – 1414.
  • Ibrahim, A.S.S., Ahmed, I.E.D. 2007. Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Australian Journal of Basic and Applied Sciences , 1(4): 473 -478.
  • Irshad, M., Anwar, Z., But, H.I., Afroz, A., Ikra m, N. 2013. The industrial applicability of purified cellulose complex indigenously produced by Trichoderma viride through solid- state bio-processing of agro- industrial and municipal paper wastes. BioResources , 8(1): 145 -157.
  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature , 227: 680-685.
  • Lah, N.T., Rahman, N.B., Nama, M.B. 2012. Cellulase activity and glucose production by Bacillus cereus monoculture and co-culture utilizing palm kernel cake (PKC) under solid state fermenta tion. International Conference on Environment, Energy and Biotechnology IPCBEE, Singapore, 33: 172- 177.
  • Lee, Y.J., Kim, B.K., Lee, B.H., Jo, K.I., Lee, N.K., Chung, C.H., Lee, Y.C., Lee, J.W. 2008. Purification and characterization of cellulase produced by Bacillus amyloliquefaciens DL -3 utilizing rice hull. Bioresource Technology, 99: 378 – 386.
  • Lennete, E.H., Ballows, A., H ausler, J.W.J.R., Shadomy, J.H. 1985. Manuel of Clinical Microbiology, Vol: 4, USA, pp. 1149.
  • Li, W., Zhang, W.W., Yang, M.M., Chen, Y.L. 2008. Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Molecular Biotechnology, 40: 195 – 201.
  • Li, Y.H., Ding, M., Wang, J., Xu, G.J., Zhao, F. 2006. A novel thermoacidophilic endoglucanase, Ba -EGA, from a new cellulose - degrading bacterium, Bacillus sp. AC -1. Applied Microbiology and Biotechnology, 70: 430-436.
  • Lin, L., Kan, X., Yan, H., Wang, D. 2012. Characterization of extracellular cellulose - degrading enzymes from Bacillus thuringiensis strains. Electronic Journal of Biotechnology, ISSN: 0717 -3458, DOI: 10.2225/vol15 -issue3 - fulltext- 1.
  • Lynd, L.R., Weimer, P.J., Van Zyl, W.H., Pretorius, I.S. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews , 66(3): 506-577.
  • Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31: 426- 428.
  • Mishra, B.K., Pandey Lata, A.K. 2007. Lignocellulolytic enzyme production from submerged fermentation of paddy straw. Indian Journal of Microbiology, 47(2): 176- 179.
  • Mora, D., Fortina, M.G., Nicastro, G., Parini, C., Manachini, P.L. 1998. Genotypic characterization of thermophilic bacilli: A study on new soil isolates and seve ral reference strains. Research in Microbiology, 149: 711 -722.
  • Murad, H.A., Azzaz, H.H. 2010. Cellulase and dairy animal feeding. Biotechnology, 9: 238 – 256.
  • Naim, S., Jamil, A. 2007. Production of endoglucanase from a thermophilic fungus. Pakistan Journal of Agricultural Sciences , 44(1): 59-63.
  • Nakamura, K., Kitamura, K. 1988. Cellulases of Cellulomonas uda. Methods in Enzymology, 160: 211 -216.
  • Ng, T.K., Zeikus, J.G. 1988. Endoglucanase from Clostridium thermocellum . Methods in Enzymology, 160: 351 -355.
  • Nishida, Y., Suzuki, K.I., Kumagai, Y., Tanaka, H., Inoue, A., Ojima , T. 2007. Isolation and primary structure of a cellulase from the Japanese sea urchin Strongylocentrotus nudus . Biochimie , 89(8):1002-1011.
  • Özcan, N., Demir, E., Pekel, E. 1994. Yüksek selülozlu yem hammaddelerinin hayvan beslemede kullanımında biyoteknolojik uygulamalar. Çukurova Üniversitesi Ziraat Fakültesi Dergisi, 9(2): 113 -126.
  • Patel, M.A., Ou, M.S., Ingram, L.O., Shanmugam, K.T. 2005. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermo-tolerant acidophilic Bacillus sp. Biotechnology Progress , 21: 1453 -1460.
  • Priest, F.G. 1977. Extracellular enzyme synthesis in the genus Bacillus .
  • Bacteriology Reviews , 41: 711 -753. Ridla , M., Uchida, S. 1993. The effect of cellulase addition on nutritional and fermentation quality of barley straw silage. Asian-Australasian Journal Of Animal Sciences , 6(3): 383 -388.
  • Ryu, D.D., Mandels, M. 1980. Cellulases: Biosynthesis and applications. Enzyme and Microbial Technology, 2(2): 91 - 102.
  • Sadhu, S., Maiti, T.K. 2013. Cellulase production by bacteria: A review. British Microbiology Research Journal, 3(3): 235 – 258.
  • Shimada, K., Karita, S., Sakka, K., Ohimiya, K. 1994. Cellulases, xylanases, and their genes from bacteria. In: Recombinant Microbes for Industrial and Agricultural Applications. Murooka, Y., Imanaka, T. (Eds.), pp. 395 -429.
  • Sukumaran, R. K., Singhania, R.R., Pandey, A. 2005. Microbial cellulase s - Production, application and challenges. Journal of Scientific and Industrial Research, 64: 832-844.
  • Van Vuuren, A.M., Bergsma, K., Frol- Kramer, F., van Beers, J.A.C. 1989. Effect of addition of cell wall degrading enzymes on the chemical composition and the in sacco degradation of grass silage. Grass and Forage Science , 44: 223 -230. Vieille, C., Zeikus, G.J. 2001.
  • Hyperthermophilic enzymes: Sources, uses and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews , 65: 1 -43.
  • Wind, R.D., Buitelaar, R.M., Eggink, G., Huizing, H.J., Dijkhuizen, L. 1994.
  • Characterization of a new Bacillus stearothermophilus isolate: A highly thermostable α-amylase producing strain. Applied Microbiology and Biotechnology, 41: 155 – 162.
  • Wood, T.M. 1985 . Properties of cellulolytic enzyme systems. Biochemical Society Transactions , 13: 407 -410.
  • Zhuang, J., Marchant, M.A., Nokes, S.E., Strobel, H.J. 2007. Economic analysis of cellulase production methods for bio-ethanol. Applied Engineering in Agriculture , 23(5): 679- 687.