Menisküs Cerrahisinin Geleceği; Menisküs Doku Mühendisliği

Son yıllarda yapılan bilimsel çalışmalarla diz eklemi için menisküslerin anatomik, biyomekanik ve fonksiyonel önemi ortaya konmuştur. Menisküs, eklemin hayati bir parçası olarak eklem kıkırdağının bozulmasını ve osteoartit gelişimini engellemektedir. Günümüz onarım teknikleri menisküsün periferal vaskülarize bölgesindeki sınırlı lezyonlarda etkili olmaktadır. Fonksiyonu, eklem fonksiyonuyla direk ilişkili merkezi avasküler bölge lezyonunun tedavisi ise ciddi bir sorun olarak bulunmaktadır. Tüm yaş grupları özellikle çocuklar artan şekilde daha zorlu, yarışmalı ve hatta profesyonel sporlarla uğraşmaktadır. Bunun sonucu olarak menisküs cerrahisi daha genç yaşlarda uygulanmakta ve uzun yaşam süreci içerisinde daha az sağlam menisküs dokusu korunabilmektedir. Genç ve aktif hastalarda parsiyel mediyal menisektomi sadece mekanik aksı hafifçe varusa kaydırsa da diz dengesinin bozulmasında başlangıç noktası olacaktır. Bozulan diz dengesi ve artan yüklenmenin ardından kaçınılmaz bir şekilde osteoartit gelişimine neden olmaktadır. Bu yüzden genç ve orta yaş hastalar için yeni rejeneratif stratejilere ihtiyaç olduğu açıktır. Bugüne kadar belli ölçüde menisküs lezyonlarının restorasyonuyla anatomik ve fonksiyonel bütünlüğünün sağlanması için invitro menisküs yapısı elde etmeye yönelik farklı yaklaşım ve stratejiler denenmiştir. Uygun hücre kaynaklarının seleksiyonu (otolog, allogenik, ksenogenik ve kök hücreler) menisküs onarım mühendisliğinde anahtar noktalardan biridir. Ayrıca çeşitli skafoldlar geliştirilmiştir. Bunlar deneysel ve klinik çalışmalarla üretilmekte ancak bazı problemlerde beraberinde gelişmektedir (stresi perdeleme, degradasyon sonucu meydana gelen yan ürünler vb). Bu problemler yeni stratejilerin geliştirilme ihtiyacını doğurmuştur. Skafoldsuz yaklaşımlar, kendi kendine toplanarak (self – assembly) çoğalma, birçok kimyasal/biyokimyasal ve mekanik uyaranın, ayrıca gen terapisinin de fonksiyonel yeni doku formasyonu oluşumundaki yeri araştırılmıştır. Bu yazı yeni menisküs rejenerasyon stratejilerine olan ihtiyacı ortaya koyacak şekilde günümüzdeki son duruma bir bakış sağlarken geleceğe yönelik yapılması gerekli çalışmalar hakkında klinisyene fikir vermektedir. Anahtar Kelimeler: 
Anahtar Kelimeler:

Menisküs, Cerrahi, Doku

Future of Meniscus Surgery; Meniscus Tissue Engineering

In recent years scientific researches have established the anatomical, biomechanical, and functional importance that the meniscus holds within the knee joint. As a vital part of the joint, meniscus acts to prevent the degeneration of articular cartilage, and the development of osteoarthritis. Current repair techniques are only effective in treating lesions located in the peripheral vascularized region of the meniscus. Healing lesions found in the iner avascular region, which functions direct related to joint function, is considered to be a significant challenge. All age groups and in particular children increasingly participate in more extreme, competitive or even professional sports. The consequence of this fact is that meniscal surgery is performed at a younger age, and less meniscus tissue is preserved for a lifetime period. In young, active patients a partial medial meniscectomy will be the starting point for a disturbed homeostasis of the knee, even if the mechanical axis is only slightly varus aligned. This altered knee homeostasis and increased loading the inevitably leads to the development of osteoarthritis. Therefore there is a clear need for regenerative strategies in these young and middle aged patients. So far, different approaches and strategies have contributed to the in vitro generation of meniscus constructs, which are capable of restoring meniscal lesions to some extent, both functionally as well as anatomically. The selection of the appropriate cell source (autologous, allogeneic, or xenogeneic cells, or stemcells) is regarded as one of key points for meniscal tissue engineering. Furthermore, a large variation of scaffolds for tissue engineering have been proposed and produced in experimental and clinical studies although a few problems with these (byproducts of degradation, stressshielding). Problems have shifted research interest toward new strategies (scaffoldless approaches, selfassembly). A large number of different chemical/biochemical and mechanical stimuli and also gene therapy have been investigated, in terms of encouraging functional tissue formation. In this review, we will give an overview on the need of research for meniscus regeneration, and provide a perspective, from the clinician’s standpoint, for designing future regenerative strategies. Key words:
Keywords:

Meniscus, Surgery,

___

  • 1. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32(30):7411-31
  • 2. Marsano A, Vunjak-Novakovic G, Martin I. Towards tissue engineering of meniscus substitutes: selection of cell source and culture environment. Conf Proc IEEE Eng Med Biol Soc. 2006;1:3656–8.
  • 3. Collier S, Ghosh P. Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. Osteoarthritis Cartilage. 1995;3:127–38.
  • 4. Gunja NJ, Athanasiou KA. Passage and reversal effects on gene expression of bovine meniscal fibrochondrocytes. Arthritis Res Ther. 2007;9:R93.
  • 5. Peretti GM, Gill TJ, Xu JW, Randolph MA, Morse KR, Zaleske DJ. Cell-based therapy for meniscal repair: a large animal study. Am J Sports Med. 2004;32:146–58.
  • 6. Weinand C, Peretti GM, Adams SB Jr. Randolph MA, Savvidis E, Gill TJ. Healing potential of transplanted allogeneic chondrocytes of three different sources in lesions of the avascular zone of the meniscus: a pilot study. Arch Orthop Trauma Surg. 2006;126:599–605.
  • 7. Ramallal M, Maneiro E, Lopez E, Fuentes-Boquete I, Lopez-Armada MJ, Fernandez-Sueiro JL. Xenoimplantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model. Wound Repair Regen. 2004;12:337–45.
  • 8. Hoben GM, Koay EJ, Athanasiou KA. Fibrochondrogenesis in two embryonic stem cell lines: effects of differentiation timelines. Stem Cells. 2008;26:422–30.
  • 9. Hoben GM, Willard VP, Athanasiou KA. Fibrochondrogenesis of hESCs: growth factor combinations and cocultures. Stem Cells Dev. 2009;18:283–92.
  • 10. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human firsttrimester fetal blood, liver, and bone marrow. Blood. 2001;98:2396–402.
  • 11. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213:341–7.
  • 12. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.
  • 13. Nerurkar NL, Sen S, Baker BM, Elliott DM, Mauck RL. Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds. Acta Biomater. 2011;7:485–91.
  • 14. Kopf S, Birkenfeld F, Becker R, Petersen W, Starke C, Wruck CJ. Local treatment of meniscal lesions with vascular endothelial growth factor. J Bone Jt Surg Am. 2010;92:2682–91.
  • 15. Zhang ZN, Tu KY, Xu YK, Zhang WM, Liu ZT, Ou SH. Treatment of longitudinal injuries in avascular area of meniscus in dogs by trephination. Arthroscopy. 1988;4:151–9.
  • 16. Uchio Y, Ochi M, Adachi N, Kawasaki K, Iwasa J. Results of rasping of meniscal tears with and without anterior cruciate ligament injury as evaluated by second-look arthroscopy. Arthroscopy. 2003;19:463– 9.
  • 17. Gershuni DH, Skyhar MJ, Danzig LA, Camp J, Hargens AR, Akeson WH. Experimental models to promote healing of tears in the avascular segment of canine knee menisci. J Bone Jt Surg Am. 1989;71:1363–70.
  • 18. Yamazaki K, Tachibana Y. Vascularized synovial flap promoting regeneration of the cryopreserved meniscal allograft: experimental study in rabbits. J Orthop Sci. 2003;8:62–8.
  • 19. Izuta Y, Ochi M, Adachi N, Deie M, Yamasaki T, Shinomiya R. Meniscal repair using bone marrowderived mesenchymal stem cells: experimental study using green fluorescent protein transgenic rats. Knee. 2005;12:217–23.
  • 20. Pabbruwe MB, Kafienah W, Tarlton JF, Mistry S, Fox DJ, Hollander AP. Repair of meniscal cartilage white zone tears using a stem cell/collagen-scaffold implant. Biomaterials. 2010;31:2583–91.
  • 21. Shi S, Gronthos S, Chen S, Reddi A, Counter CM, Robey PG. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol. 2002;20:587–91.
  • 22. Yu H, Adesida AB, Jomha NM. Meniscus repair using mesenchymal stem cells – a comprehensive review. Stem Cell Research & Therapy 2015;6:86
  • 23. Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR. The sensitivity of tibiofemoral contact pressure to the size and shape of the lateral and medial menisci. J Orthop Res. 2004;22:807–14.
  • 24. Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 2006;12:1325–35.
  • 25. Soppimath KS, Aminabhavi TM, Dave AM, Kumbar SG, Rudzinski WE. Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug Dev Ind Pharm. 2002;28:957–74.
  • 26. Liu Tsang V, Chen AA, Cho LM, Jadin KD, Sah RL, DeLong S. Fabrication of 3D hepatic tissues byadditive photopatterning of cellular hydrogels. FASEB J. 2007;21:790–801.
  • 27. Richter C, Reinhardt M, Giselbrecht S, Leisen D, Trouillet V, Truckenmuller R. Spatially controlled cell adhesion on three-dimensional substrates. Biomed Microdevices. 2010;12:787–95.
  • 28. Chen JP, Cheng TH. Thermo-responsive chitosangraft-poly (N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol Biosci. 2006;6:1026–39.
  • 29. Stone KR, Steadman JR, Rodkey WG, Li ST. Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. J Bone Jt Surg Am. 1997;79:1770–7.
  • 30. Rodkey WG, DeHaven KE, Montgomery WH 3rd, Baker CL Jr. Beck CL Jr. Hormel SE. Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Jt Surg Am. 2008;90:1413–26.
  • 31. Schoenfeld AJ, Landis WJ, Kay DB. Tissueengineered meniscal constructs. Am J Orthop (Belle Mead NJ). 2007; 36:614–20.
  • 32. Cook JL, Tomlinson JL, Kreeger JM, Cook CR. Induction of meniscal regeneration in dogs using a novel biomaterial. Am J Sports Med. 1999;27:658–65.
  • 33. Cook JL, Fox DB, Malaviya P, Tomlinson JL, Kuroki K, Cook CR. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med. 2006;34:32–42.
  • 34. Bradley MP, Fadale PD, Hulstyn MJ, Muirhead WR, Lifrak JT. Porcine small intestine submucosa for repair of goat meniscal defects. Orthopedics. 2007;30:650–6.
  • 35. Hu JC, Athanasiou KA. A self-assembling process in articular cartilage tissue engineering. Tissue Eng. 2006;12:969–79.
  • 36. Huey DJ, Athanasiou KA. Maturational growth of selfassembled, functional menisci as a result of TGF-beta1 and enzymatic chondroitinase-ABC stimulation. Biomaterials. 2011;32:2052–8.
  • 37. Ofek G, Revell CM, Hu JC, Allison DD, Grande-Allen KJ, Athanasiou KA. Matrix development in selfassembly of articular cartilage. PLoS One. 2008;3:e2795.
  • 38. Aufderheide AC, Athanasiou KA. Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs. Tissue Eng. 2007;13:2195–205.
  • 39. Kasemkijwattana C, Menetrey J, Goto H, Niyibizi C, Fu FH, Huard J. The use of growth factors, gene therapy and tissue engineering to improve meniscal healing. Mater Sci Eng C Mater Biol Appl. 2000;13:19–28.
  • 40. Bhargava MM, Attia ET, Murrell GA, Dolan MM, Warren RF, Hannafin JA. The effect of cytokines on the proliferation and migration of bovine meniscal cells. Am J Sports Med. 1999;27:636–43.
  • 41. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrowderived mesenchymal progenitor cells. Exp Cell Res. 1998;238:265–72.
  • 42. Freyman TM, Yannas IV, Yokoo R, Gibson LJ. Fibroblast contraction of a collagen-GAG matrix. Biomaterials. 2001;22:2883–91.
  • 43. Zaleskas JM, Kinner B, Freyman TM, Yannas IV, Gibson LJ, Spector M. Contractile forces generated by articular chondrocytes in collagen-glycosaminoglycan matrices. Biomaterials. 2004;25:1299–308. , 44. Kalson NS, Holmes DF, Kapacee Z, Otermin I, Lu Y, Ennos RA. An experimental model for studying the biomechanics of embryonic tendon: Evidence that the development of mechanical properties depends on the actinomyosin machinery. Matrix Biol. 2010;29:678– 89.
  • 45. Rhee S, Grinnell F. P21-activated kinase 1: convergence point in PDGF- and LPA-stimulated collagen matrix contraction by human fibroblasts. J Cell Biol. 2006;172:423–32.
  • 46. Veilleux N, Spector M. Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagenglycosaminoglycan scaffolds in vitro. Osteoarthritis Cartilage. 2005;13:278–86.
  • 47. Asanbaeva A, Masuda K, Thonar EJ, Klisch SM, Sah RL. Mechanisms of cartilage growth: modulation of balance between proteoglycan and collagen in vitro using chondroitinase ABC. Arthritis Rheum. 2007;56:188–98.
  • 48. Natoli RM, Revell CM, Athanasiou KA. Chondroitinase ABC treatment results in greater tensile properties of self-assembled tissue-engineered articular cartilage. Tissue Eng Part A. 2009;15:3119– 28.
  • 49. Ishida K, Kuroda R, Miwa M, Tabata Y, Hokugo A, Kawamoto T. The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng. 2007;13:1103–12.
  • 50. Natsu-Ume T, Majima T, Reno C, Shrive NG, Frank CB, Hart DA. Menisci of the rabbit knee require mechanical loading to maintain homeostasis: cyclic hydrostatic compression in vitro prevents derepression of catabolic genes. J Orthop Sci. 2005;10:396–405.
  • 51. Gunja NJ, Athanasiou KA. Effects of hydrostatic pressure on leporine meniscus cell-seeded PLLA scaffolds. J Biomed Mater Res A. 2010;92:896–905.
  • 52. Gunja NJ, Uthamanthil RK, Athanasiou KA. Effects of TGF-beta1 and hydrostatic pressure on meniscus cellseeded scaffolds. Biomaterials. 2009;30:565–73.
  • 53. Upton ML, Chen J, Guilak F, Setton LA. Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res. 2003;21:963–9.
  • 54. Fink C, Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Guilak F. The effect of dynamic mechanical compression on nitric oxide production in the meniscus. Osteoarthritis Cartilage. 2001;9:481–7.
  • 55. Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand. 1980;51:871–9.
  • 56. Ferretti M, Madhavan S, Deschner J, Rath-Deschner B, Wypasek E, Agarwal S. Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. Am J Physiol Cell Physiol. 2006;290:C1610–5.
  • 57. Eifler RL, Blough ER, Dehlin JM, Haut Donahue TL. Oscillatory fluid flow regulates glycosaminoglycan production via an intracellular calcium pathway in meniscal cells. J Orthop Res. 2006;24:375–84.
  • 58. Longo UG, Campi S, Romeo G, Spiezia F, Maffulli N, Denaro V. Biological strategies to enhance healing of the avascular area of the meniscus. Stem Cells Int. 2012;2012:528359.
  • 59. H.Goto, F.D. Shuler, C.Niyibizi, F.H. Fu, P.D. Robbins, C. H. Evans. Gene therapy for meniscal injury: enhanced synthesis of proteoglycan and collagen by meniscal cells transduced with a TGFβ1 gene. Osteoarthritis and Cartilage. 2000;8:266-71.
  • 60. C. Hidaka, C. Ibarra, J. A. Hannafin. Formation of vascularized meniscal tissue by combining gene therapy with tissue engineering. Tissue Engineering. 2002;8:93-105.