Ozonlanmış arap zamkının reolojik, termal ve yapısal özelliklerinin incelenmesi

Arap zamkı (AZ) gıda sanayisinde birçok alanda yaygın bir şekilde kullanılan, oldukça karmaşık bir yapıya sahip bir heteropolisakkarittir. Bu çalışmada, %20 (AZ 20) ve %32 (a/a) (AZ 32) konsantrasyonlara sahip AZ numuneleri 60 dk boyunca ozonlanmış ve ozonlama işlemi işleminin sonucunda reolojik, termal ve kimyasal yapı özellikleri araştırılmıştır. Ozonlama işlemi boyunca AZ 20 ve AZ 32 numuneleri için sırasıyla litrede 0,021 ve 0,023 g ozon tüketilmiştir. Ozonlama, AZ solüsyonlarının viskozitesini, akışını ve kıvam indeksini önemli ölçüde azaltmıştır (P<0,05). AZ numunelerinin genel kimyasal yapısında belirgin bir değişiklik gözlenmemesine rağmen, Fourier dönüşümlü spektroskopi analizi ile –OH bantlarının absorpsiyonunda bir artış tespit edilmiştir. Taramalı diferansiyel kalorimetre ile yapılan termal analiz sonuçları tepe sıcaklıklarının azaldığını gösterirken, indirgen şeker miktarları da (galaktoz ve arabinoz) artış göstermiştir. Elde edilen sonuçlar ozonlama işleminin arap zamkının reolojik ve termal özellikleri değiştirdiğini göstermiştir. Ozonlama işleminin, ilgili sektörlerde uygulanan geleneksel oksidasyon metotlarına karşı çevre dostu bir alternatif olabileceğini sonucuna varılmıştır.

Investigation of rheological, thermal and structural properties of ozonated gum arabic

Gum arabic is heteropolysaccharide with complex structure that is widely used in the food industry. In this study, gum arabic samples with 20% (AZ 20) and 32% (AZ 32) concentrations (w/w) were ozonated for 60 minutes and rheological, thermal, and chemical structure properties were investigated. During ozonation process, AZ 20 and AZ 32 samples consumed 0.021 and 0.023 g ozone/liter, respectively. Ozonation reduced viscosity, flow, and consistency index of AZ samples (P<0.05). Although no significant change was observed in overall chemical structure of AZ samples, an increase in absorption of –OH bands were detected by FTIR analysis. Thermal analysis results showed that peak temperatures decreased, while amount of reducing sugars (galactose and arabinose) increased. While the ozonation process provides valuable contributions to sectors related to rheological and thermal properties of samples, it is thought that oxidation method applied can provide important advantages as it is cheap, easy to apply, and environmentally friendly.

___

  • Al-Assaf, S., Phillips, G.O., Aoki, H., & Sasaki, Y. (2007). Characterization and properties of Acacia senegal (L.) willd. var. senegal with enhanced properties (Acacia (sen.) SUPER GUM (TM)): Part 1-controlled maturation of Acacia senegal var. senegal to increase viscoelasticity, produce a hydrogel form and convert a poor into a good emulsifier. Food Hydrocolloids, 21 (3), 319-328.
  • Ali, A., Ganie, S. A., & Mazumdar, N. (2018). A new study of iodine complexes of oxidized gum arabic: An interaction between iodine monochloride and aldehyde groups. Carbohydrate Polymers, 180, 337-347.
  • Brodowska, A. J., Nowak, A., & Śmigielski, K. (2018). Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Critical Reviews in Food Science and Nutrition, 58(13), 2176–2201.
  • Chan, H. T., Fazilah, A., Bhat, R., Leh, C. P., & Karim, A. A. (2012). Effect of deproteinization on degree of oxidation of ozonated starch. Food Hydrocolloids, 26(2), 339–343.
  • Çatal, H., & Ibanoǧlu, Ş. (2014). Effect of aqueous ozonation on the pasting, flow and gelatinization properties of wheat starch. LWT - Food Science and Technology, 59(1), 577–582.
  • Daoub, R. M. A., Elmubarak, A. H., Misran, M., Hassan, E. A., & Osman, M. E. (2018). Characterization and functional properties of some natural Acacia gums. Journal of the Saudi Society of Agricultural Sciences, 17(3), 241–249.
  • Ganie, S. A., Ali, A., & Mazumdar, N. (2015). Iodine derivatives of chemically modified gum Arabic microspheres. Carbohydrate Polymers, 129, 224–231.
  • Guzel-Seydim, Z. B., Greene, A. K., & Seydim, A. C. (2004). Use of ozone in the food industry. LWT - Food Science and Technology, 37(4), 453–460.
  • Jamaludin, J., Adam, F., Rasid, R. A., & Hassan, Z. (2017). Thermal studies on Arabic gum-carrageenan polysaccharides film. Chemical Engineering Research Bulletin, 80-86.
  • Klein, B., Vanier, N. L., Moomand, K., Pinto, V. Z., Colussi, R., Da Rosa Zavareze, E., & Dias, A. R. G. (2014). Ozone oxidation of cassava starch in aqueous solution at different pH. Food Chemistry, 155, 167–173.
  • Kumar, P., & Khan, Z. (2005). Oxidation of gum arabic by soluble colloidal MnO2. Carbohydrate research, 340(7), 1365-1371.
  • Li, X., Fang, Y., Al-Assaf, S., Phillips, G. O., Nishinari, K., & Zhang, H. (2009). Rheological study of gum arabic solutions: Interpretation based on molecular self-association. Food Hydrocolloids, 23(8), 2394-2402.
  • Lima, D. C., Villar, J., Castanha, N., Maniglia, B. C., Matta Junior, M. D., & Duarte Augusto, P. E. (2020). Ozone modification of arracacha starch: Effect on structure and functional properties. Food Hydrocolloids, 108(May), 106066.
  • Mariod, A. A. (2018). Functional properties of Gum Arabic. In Gum Arabic (pp. 283-295). Academic Press.
  • Miao, Q., Jiang, H., Gao, L., Cheng, Y., Xu, J., Fu, X., & Gao, X. (2018). Rheological Properties of Five Plant Gums. American Journal of Analytical Chemistry, 09(04), 210–223.
  • Mohammed, A. M. E. (2017). Estimation of the Active Components in Gum Arabic Collected from Western Sudan. International Journal of Science and Research, 6(3), 1262–1282.
  • Mothé, C.G. & Rao,M.A. (1999). Rheological behavior of aqueous dispersions of cashew gum and gum arabic: Effect of concentration and blending. Food Hydrocolloids, 13(6), 501-506.
  • O'Donnell, C., Tiwari, B. K., Cullen, P. J., & Rice, R. G. (Eds.). (2012). Ozone in food processing. John Wiley & Sons. Özaslan, Z. T., & Ibanoğlu, Ş. (2022). Rheological, Thermal, Structural, and Chemical Changes during Oxidation of Gum Arabic by Ozone. Ozone: Science & Engineering, 1-13.
  • Pandiselvam, R., Subhashini, S., Banuu Priya, E. P., Kothakota, A., Ramesh, S. V., & Shahir, S. (2019). Ozone based food preservation: a promising green technology for enhanced food safety. Ozone: Science & Engineering, 41(1), 17–34.
  • Prajapat, A. L., & Gogate, P. R. (2015). Intensification of degradation of guar gum: Comparison of approaches based on ozone, ultraviolet and ultrasonic irradiations. Chemical Engineering and Processing: Process Intensification, 98, 165–173.
  • Randall, R. C., Phillips, G. O., & Williams, P. A. (1989). Fractionation and characterization of gum from Acacia senegal. Food hydrocolloids, 3(1), 65-75
  • Sabet, S., Rashidinejad, A., Melton, L. D., Zujovic, Z., Akbarinejad, A., Nieuwoudt, M., Seal, C. K., & McGillivray, D. J. (2021). The interactions between the two negatively charged polysaccharides: Gum Arabic and alginate. Food Hydrocolloids, 112(September 2020), 106343.
  • Sanchez, C., Nigen, M., Mejia Tamayo, V., Doco, T., Williams, P., Amine, C., & Renard, D. (2018). Acacia gum: History of the future. Food Hydrocolloids, 78, 140–160.
  • Sanchez, C., Renard, D., Robert, P., Schmitt, C., & Lefebvre, J. (2002). Structure and rheological properties of acacia gum dispersions. Food Hydrocolloids, 16(3), 257-267.
  • Sarika, P. R., Cinthya, K., Jayakrishnan, A., Anilkumar, P. R., & James, N. R. (2014). Modified gum arabic cross-linked gelatin scaffold for biomedical applications. Materials Science and Engineering: C, 43, 272-279.
  • Seo, S., King, J. M., & Prinyawiwatkul, W. (2007). Simultaneous depolymerization and decolorization of chitosan by ozone treatment. Journal of Food Science, 72(9), C522-C526.
  • Van Leeuwen, J. (2015). Proposed OS&E requirement: measuring ozone dosage. Ozone: Science & Engineering, 37(2), 191-192.
  • Verbeken, D., Dierckx, S., & Dewettinck, K. (2003). Exudate gums: occurrence, production, and applications. Applied microbiology and biotechnology, 63, 10-21.
  • Vuillemin, M. E., Michaux, F., Adam, A. A., Linder, M., Muniglia, L., & Jasniewski, J. (2020). Physicochemical characterizations of gum Arabic modified with oxidation products of ferulic acid. Food Hydrocolloids, 107(September 2019), 105919.
  • Wang, D., Ma, X., Yan, L., Chantapakul, T., Wang, W., Ding, T., Ye, X., & Liu, D. (2017). Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: Investigation on starch properties and degradation kinetics. Carbohydrate Polymers, 175, 47–54.