Aspir çeşit ve ıslah hatlarında AFLP belirteçleri ile genetik çeşitliliğin belirlenmesi

Aspir, kendine döllenen tek yıllık bir yağ bitkisidir ve antik çağlardan beri Orta Doğu'da yetiştirilmektedir. Aspir önemini yitiren bir kültür bitkisi haline gelmiştir ve aspir tarımını artırmak için yeni çeşitlerin temini ve karakterizasyonu gereklidir. Farklı coğrafi kökene sahip 38 aspir çeşidi ve ıslah hattı arasındaki genetik çeşitliliği ve ilişkilerini belirlemek için 8 AFLP primer kombinasyonu kullanılarak genotiperler taranmıştır. AFLP primerleri, reaksiyon başına ortalama 51.2 bant ve toplamda 410 bant üretmiştir. Üretilen bantların 113 tanesinin genotipler arasında polimorfik olduğu gözlenmiş ve polimorfizm oranı %14.8-%41.4 arasında değişmiştir. Primer kombinasyonlarının polimorfizm bilgi içeriği (PIC) 0.21-0.38 ve çözümleme gücü (Rp) 5.11-27.68 arasında değişmiştir. Aspir çeşit ve ıslah hatları arasındaki genetik benzerlik katsayıları 0.245-0.850 arasında değişkenlik gösterirken; ortalama genetik benzerlik 0.573 olarak bululnumuştur. Benzerlik matrisine dayalı dendogram, genotipleri üç küme içine yerleştirmiş fakat üç kültivar gruplandrılamamıştır. Mevcut çalışma, genotipler içerisindeki genetik çeşitliliğin boyutunu göstermekte ve gelecekte yapılacak ıslah ve genetik analizler için faydalı olacaktır.

Assessment of genetic diversity in safflower cultivars and breeding lines with AFLP markers

Safflower is a self-pollinating oilseed crop and has been cultivated since antiquity in the Middle East. Safflower has become a minor oilseed crop, and to increase its cultivation it is necessary to characterize and introduce new germplasm. Thirty-eight safflower cultivars and breeding lines from different countries have been screened with 8 AFLP primer combinations to assess genetic diversity and relationships among these genotypes. AFLP primers produced total of 410 bands, 113 of which was polymorphic, with an average of 51.2 bands per assay. Polymorphism ratio changed between 14.8 to 41.4% among the genotypes. Polymorphism information content (PIC) and resolving power (Rp) of the primer combinations were between 0.21-0.38 and 5.11-27.68, respectively. Genetic similarity coefficients were between 0.245-0.850 with an average of 0.573. Dendrogram based on similarity matrix produced three clusters and three cultivars clustered separately from the rest of the genotypes. The study shows genetic variation within germplasm and could be useful for breeding and genetic diversity studies in the future.

___

  • Ali, F., Nadeem, M. A., Habyarimana, E., Yılmaz, A., Nawaz, M. A., Khalil, I. H., Ercişli, S., Chung, G., & Baloch F. S. (2020). Molecular characterization of genetic diversity and similarity centers of safflower accessions with ISSR markers. Brazilian Journal of Botany, 43, 109-121. DOI: https://doi.org/10.1007/s40415-019-00574-7
  • Amini, F., Saeidi, G., & Arzani, A. (2008). Study of genetic diversity in safflower genotypes using agro-morphological traits and RAPD markers. Euphytica, 163, 21-30. DOI: https://doi.org/10.1007/s10681-007-9556-6
  • Archak, S., Galkwad, A. B., Gautam, D., Rao, V. B., Swamy, K. R. M., & Karihaloo, J. R. (2003). Comperative assessment of DNA finger printing techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome, 46, 362-369. DOI: https://doi.org/10.1139/g03-016
  • Chapman, M. A., & Burke, J. M. (2007). DNA sequence diversity and the origin of cultivated safflower (Carthamus tinctorius L.; Asteraceae). BMC Plant Biology, 7, 1-9. DOI: https://doi.org/10.1186/1471-2229-7-60
  • Çankaya, A., Tonguç, M., & Önder, S. (2019). Peroxidase gene based genetic relationships among safflower genotypes. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 14, 367-373. DOI: https://doi.org/10.29233/sdufeffd.612472
  • Doyle, J., & Doyle, J. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15. DOI: https://doi.org/10.1007/978-3-642-83962-718
  • Giachino, R. R. A., & İnan, D. (2019). Assessment of genetic diversity in safflower (Carthamus tinctorius L.) using RAPD markers. Yuzuncu Yıl University Journal of Agricultural Sciences, 29, 300-308. DOI: https://doi.org/10.29133/yyutbd.560936
  • Johnson, R. C., Kisha, T. J., & Evans, M. A. (2007). Characterizing safflower germplasm with AFLP molecular markers. Crop Science, 47, 1728-1736. DOI: https://doi.org/10.2135/cropsci2006.12.0757
  • Kim, E. O., Oh, J. H., Lee, S. K., Lee, J. Y., & Choi S. W. (2007). Antioxidant properties and quantification of phenolic compounds from safflower (Carthamus tinctorius L.) seeds. Food Science and Biotechnology, 16, 71-77.
  • Köse, A. (2017). Eskişehir koşulları altında bazı aspir (Carthamus tinctorius L.) çeşitlerinin tarımsal performanslarının belirlenmesi. Selcuk Journal of Agriculture and Food Science, 31, 1-7. DOI: https://doi.org/10.15316/SJAFS.2018.55
  • Landau, S., Friedman, S., Brenner, S., Brukental, I., Weinberg, Z. G., Ashbell, G., Hen, Y., Dvash, L., & Leshem, Y. (2004). The value of safflower (Carthamus tinctorius L.) hay and silage grown under Mediterranean conditions as forage for dairy cattle. Livestock Production Science, 88, 263-271. DOI: https://doi.org/10.1016/j.livprodsci.2003.11.011
  • Mokhtari, N., Sayed-Tabatabaei, B. E., Bahar, M., & Arabnezhad, H. (2018). Assessment of genetic diversity and population genetic structure of Carthamus species and Iranian cultivar collection using developed SSR markers. Journal of Genetics, 97, e67-e78. DOI: https://doi.org/10.1007/s12041-018-0956-2
  • Mündel, H. H., & Bergman, J. W. (2009). Safflower. In J. Vollman & I. Rajcan (Eds.), Oil Crops, Handbook of Plant Breeding (pp 423-448). Springer, New York.
  • Naresh, V., Yamini, K. N., Rajendrakumar, P., & Kumar, V. (2009). EST-SSR marker-based assay for the genetic purity assessment of safflower hybrids. Euphytica, 170, 347-353. DOI: https://doi.org/10.1007/s10681-009-9995-3
  • Peng, S., Feng, N., Guo, M., Chen, Y., & Guo, Q. (2008). Genetic variation of Carthamus tinctorius L. and related species revealed by SRAP analysis. Biochemical Systematics and Ecology, 36, 531-538. DOI: https://doi.org/10.1016/j.bse.2008.03.010
  • Pejic, L., Ajmone-Marsan, P., Morgante, M., Kozumplick, V., Castiglioni, P., Taramino, G., & Motto, M. (1998). Comperative analysis of genetic similarity among maize inbred lines detected by RFLP, RAPD, SSR and AFLPs. Theoretical and Applied Genetics, 97, 1248-1255. DOI: https://doi.org/10.1007/s001220051017
  • Pearl, S. A., Bovers, J. E., Chin-Wo, S., Michelmore, R. W., & Burke, J. M. (2014). Genetic analysis of safflower domestication. BMC Plant Biology, 4, 1-5. DOI: https://doi.org/10.1186/1471-2229-14-43
  • Pillen, K., Binder, A., Kreuzkam, B., Ramsay, L., Waugh, R., Forster, J., & Leon, J. (2000). Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars. Theoretical and Applied Genetics, 101, 652-660. DOI: https://doi.org/10.1007/s001220051527
  • Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2, 225-238. DOI: https://doi.org/10.1007/BF00564200
  • Prevost, A., & Wilkinson, M. J. (1999). A new system for comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98, 107-112. DOI: https://doi.org/10.1007/s001220051046
  • Ragot, M., & Hoisington, D. A. (1993). Molecular markers for plant breeding: Comparison of RFLP and RAPD genotyping costs. Theoretical and Applied Genetics, 86, 975-984. DOI: https://doi.org/10.1007/BF00211050
  • Rohlf, F. J. (1992). NTSYS-pc: Numerical taxonomy and multivariate analysis system. Applied Biostatistics.
  • Roldan-Ruiz, I., Daendauw, J., Van Bockstaele, E., Depicker, A., & De Loose, M. (2000). AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding, 6, 125-134. DOI: https://doi.org/10.1023/A:1009680614564
  • Sehgal, D., & Raina, S. N. (2005). Genotyping safflower (Carthamus tinctorius L.) cultivars by DNA finger prints. Euphytica, 146, 67-76. DOI: https://doi.org/10.1007/s10681-005-8496-2
  • Sehgal, D., Rajpal, V. R., Raina, S. N., Sasanuma, T., & Sasakuma, T. (2009). Assaying polymorphism at DNA level for genetic diversity diagnostics of safflower (Carthamus tinctorius L.) world germplasm resources. Genetica, 135, 457-470. DOI: https://doi.org/10.1007/s10709-008-9292-4
  • Sirinivas, C. V. S., Praveena, B., & Nagaraj, G. (1999). Safflower petals: A source of gamma linolenic acid. Plant Foods for Human Nutrition, 54, 89-92. DOI: https://doi.org/10.1023/A:1008107521247
  • Tanksley, S. D., & McCouch, S. R. (1997). Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 277, 1063-1066. DOI: https://doi.org/ 10.1126/science.277.5329.1063
  • Tonguç, M., & Erbaş, S. (2009). Yerli ve yabancı orijinli aspir (Carthamus tinctorius L.) çeşit ve hatlarının verim ve verim öğelerinin belirlenmesi. Paper presented at the Türkiye VIII. Tarla Bitkileri Kongresi, 2, 19-22.
  • Tonguç, M., Erbaş, S., & Baydar, H. (2011). Aspirde geliştirilen rekombinant saf hat populasyonunun genetik harita populasyonu olarak kullanma imkanlarının araştırılması. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 6(2), 1-7.
  • Yıldız, M., Altaf, M. T., Baloch, F. S., Koçak, M., Sadık, G., Kuzgun, C., Nadeem, M. A., Ali, F., Bedir, M., & Tunçtürk, M. (2022). Assesment of genetic diversity among 131 safflower (Carthamus tinctorius L.) accessions using peroxidase gene polymorphisms. Molecular Biology Reports, 49, 6531-6539. DOI: https://doi.org/10.1007/s11033-022-07485-z
  • Weiss, E. A. (2000). Safflower. In E. A. Weiss (Eds.), Oilseed Crops (pp 93-129). Wiley-Blackwell, Australia.
Harran Tarım ve Gıda Bilimleri Dergisi-Cover
  • Başlangıç: 1997
  • Yayıncı: Harran Üniversitesi Ziraat Fakültesi
Sayıdaki Diğer Makaleler

Kuyruk milinden hareketli tek etkili diskli tırmığın toprağın bazı özelliklerine etkisi

Ergün ÇITIL, Tamer MARAKOĞLU

Türkiye'de İzmir, Manisa, Balıkesir ve Çanakkale illerinde zeytin alanlarındaki nematodların komünite yapısı

Lerzan ÖZTÜRK

Lavandin (Lavandula x intermedia Emeric ex Loisel.)’de morfogenetik varyebilitenin belirlenmesi

Abdulhabip ÖZEL

Verim ve verimle ilgili özellikler için susamda (Sesamum indicum L.) genetik değişkenlik

Sintayehu GEDİFEW

Bazı ekmeklik ve makarnalık buğday çeşitlerinin farklı fenolojik dönemlerinde sarı pas (Puccinia striiformis f. sp. tritici) hastalık şiddeti değişiminin çok bantlı (Hyperspectral) veriler kullanılarak İncelenmesi

Metin AYDOĞDU, Kadir AKAN

Aspir çeşit ve ıslah hatlarında AFLP belirteçleri ile genetik çeşitliliğin belirlenmesi

Muhammet TONGUÇ, Sabri ERBAŞ

Büyükbaş hayvan yetiştiriciliği işletmelerinin enerji kullanımlarının ve bazı mekanizasyon özelliklerinin belirlenmesi üzerine bir çalışma

İsmail BOYAR, Can ERTEKİN

Türkiye’nin Şanlıurfa ilinde farklı ana materyaller üzerinde oluşan toprakların toplam element konsantrasyonlarının belirlenmesinde XRF ve ICP-OES yöntemlerinin karşılaştırılması

Yüsra İNCİ, Ali Volkan BİLGİLİ, Recep GÜNDOĞAN, Yusuf Kagan KADIOĞLU

Ozonlanmış arap zamkının reolojik, termal ve yapısal özelliklerinin incelenmesi

Zeynep Tuğba ÖZASLAN, Şenol İBANOĞLU

İnek ve keçi sütünden yapılan yarı sert peynirin bazı özellikleri

Aslı ALBAYRAK