Bitki Biyoteknolojisi’nde MikroRNA Tabanlı İnterferans Uygulamaları

Bitki biyoteknolojisi, modern genetik mühendisliği araçlarını kullanarak bitkilerin istenilen karakterlerinin iyileştirilmesini amaçlar. Son yıllarda, protein kodlamayan küçük RNA’lardan olan mikroRNA (miRNA) genlerinin yer aldığı, doğal gen ifadesini düzenleyici mekanizma olan RNA interferans (RNAi), bitki geliştirilmesinde faydalı bir araç olarak önem kazanmıştır. miRNA’ların, hemen hemen bütün biyolojik ve metabolik işlevde anahtar düzenleyici role sahip oldukları ortaya konulmuştur. Hücresel yolakların miRNA tabanlı RNAi ile manipüle edilmesi ile bitki yapısının değiştirilmesi, abiyotik streslere toleransın ve biyotik streslere direncin geliştirilmesi, bitkilerin besin değerlerince zenginleştirilmesi, meyve ve sebzelerde raf ömrünün uzatılması ve sekonder metabolit üretiminin artırılması gibi daha pek çok bitki biyoteknolojisi alanında başarılı örneklerin varlığı, bu teknolojinin gelecek vaat eden bir araç olduğunu göstermektedir. Bu bağlamda, bu derleme, bitki miRNA genleri ve miRNA tabanlı RNAi teknolojisinin bitki iyileştirilmesinde uygulamalarına dair son gelişmeleri sunmayı amaçlamaktadır.

MicroRNA-Based Interference Applications in Plant Biotechnology

Plant biotechnology aims to improve desirable characters of plants by using modern genetic engineering tools. Recently, RNA interference (RNAi), which is a natural sequence-specific gene expression regulatory mechanism involving non-coding small RNAs like microRNA (miRNA), has gained importance as a beneficial tool for crop improvement. MiRNAs are identified as the key regulators in almost all biological and metabolic processes. Hereby, manipulating miRNA-based RNAi pathways offer a promising tool in the presence of successful applications on several fields of plant biotechnology, such as altering plant architecture, improving abiotic stress tolerance and biotic stress resistance, enrichment the nutritional value of plants, prolonging shelf life of fruits and vegetables, enhancing secondary metabolite production.  This review aims to provide the latest updates on plant miRNAs and applications of miRNA-based RNAi technology for crop improvement.

___

  • Allen , E., Xie, Z., Gustafson, A. M., Carrington, J. C., 2005. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121(2): 207-221.
  • Chavez Montes, R. A., de Fatima Rosas-Cardenas, F., De Paoli, E., Accerbi, M., Rymarquis, L. A., Mahalingam, G., Marsch-Martinez, N., Meyers, B. C., Green, P. J., de Folter, S., 2014. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nature Communications, 5(1): 3722.
  • Chen, L., Wang, T., Zhao, M., Tian, Q., Zhang, W. H., 2012. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Planta, 235(2): 375-386.
  • Cheng, H. Y., Wang, Y., Tao, X., Fan, Y. F., Dai, Y., Yang, H., Ma, X. R., 2016. Genomic profiling of exogenous abscisic acid-responsive microRNAs in tomato (Solanum lycopersicum). BMC Genomics, 17(1): 423.
  • de Jong, M., Wolters-Arts, M., Feron, R., Mariani, C., Vriezen, W. H., 2009. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. The Plant Journal, 57(1): 160-170.
  • Ding, Y., Ye, Y., Jiang, Z., Wang, Y., Zhu, C., 2016. MicroRNA390 is involved in cadmium tolerance and accumulation in rice. Front Plant Sci, 7(1): 235.
  • Elitzur, T., Yakir, E., Quansah, L., Zhangjun, F., Vrebalov, J., Khayat, E., Giovannoni, J. J., Friedman, H., 2016. Banana MaMADS transcription factors are necessary for fruit ripening and molecular tools to promote shelf-life and food security. Plant Physiology, 171(1): 380-391.
  • Fahlgren, N., Jogdeo, S., Kasschau, K. D., Sullivan, C. M., Chapman, E. J., Laubinger, S., Smith, L. M., Dasenko, M., Givan, S. A., Weigel, D., Carrington,J. C., 2010. MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell, 22(4): 1074-1089.
  • Fan, C., Hao, Z., Yan, J., Li, G., 2015. Genome-wide identification and functional analysis of lincRNAs acting as miRNA targets or decoys in maize. BMC Genomics, 16(1): 793.
  • Field , S., Thompson, B., 2016. Analysis of the Maize dicer-like1 Mutant, fuzzy tassel, Implicates MicroRNAs in Anther Maturation and Dehiscence. PLoS One, 11(1): e0146534.
  • Fukusaki, E., Kawasaki, K., Kajiyama, S., An, C. I., Suzuki, K., Tanaka, Y., Kobayashi, A., 2004. Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J Biotechnol, 111(3): 229-240.
  • Gil-Humanes, J., Piston, F., Barro, F., Rosell, C. M., 2014. The shutdown of celiac disease-related gliadin epitopes in bread wheat by RNAi provides flours with increased stability and better tolerance to over-mixing. PLoS One, 9(3): e91931.
  • Gilissen, L. J., Bolhaar, S. T., Matos, C. I., Rouwendal, G. J., Boone, M. J., Krens, F. A., Zuidmeer, L., Van Leeuwen, A., Akkerdaas, J., Hoffmann-Sommergruber, K., Knulst, A. C., Bosch, D., Van de Weg, W. E., Van Ree, R., 2005. Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol, 115(2): 364-369.
  • Gronquist, M., Bezzerides, A., Attygalle, A., Meinwald, J., Eisner, M., Eisner, T., 2001. Attractive and defensive functions of the ultraviolet pigments of a flower (Hypericum calycinum). Proc Natl Acad Sci U S A, 98(24): 13745-13750.
  • Guo, H. S., Xie, Q., Fei, J. F., Chua, N. H., 2005. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell, 17(5): 1376-1386.
  • Gutierrez , L., Bussell, J. D., Pacurar, D. I., Schwambach, J., Pacurar, M., Bellini, C., 2009. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell, 21(10): 3119-3132.
  • Han, J. Y., Kwon, Y. S., Yang, D. C., Jung, Y. R., Choi, Y. E., 2006. Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiol, 47(12): 1653-1662.
  • Herman, E. M., Helm, R. M., Jung, R., Kinney, A. J., 2003. Genetic modification removes an immunodominant allergen from soybean. Plant Physiol, 132(1):36-43.
  • Jalali, S., Bhartiya, D., Lalwani, M. K., Sivasubbu, S., Scaria, V., 2013. Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One, 8(2): e53823.
  • Jiao, Y., Wang, Y., Xsu, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, Z., Lu, Z., Zhu, X., Qian, Q., Li, J., 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 42(6),541–544.
  • Jones-Rhoades, M. W., 2012. Conservation and divergence in plant microRNAs. Plant Mol Biol, 80(1): 3-16.
  • Jung, I. L., Ryu, M., Cho, S. K., Shah, P., Lee, J. H., Bae, H., Kim, I. G., Yang, S. W., 2015. Cesium toxicity alters microRNA processing and AGO1 Expressions in Arabidopsis thaliana. PLoS One, 10(5): e0125514.
  • Kempe, K., Higashi, Y., Frick, S., Sabarna, K., Kutchan, T. M., 2009. RNAi suppression of the morphine biosynthetic gene salAT and evidence of association of pathway enzymes. Phytochemistry, 70(5): 579-589.
  • Kozomara, A., Griffiths-Jones, S., 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42:D68-D73
  • Lauter, N., Kampani, A., Carlson, S., Goebel, M., Moose, S. P., 2005. MicroRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proceedings of the National Academy of Sciences of the United States of America, 102(26): 9412-9417.
  • Le, L. Q., Mahler, V., Lorenz, Y., Scheurer, S., Biemelt, S., Vieths, S., Sonnewald, U., 2006. Reduced allergenicity of tomato fruits harvested from Lyc e 1-silenced transgenic tomato plants. J Allergy Clin Immunol, 118(5): 1176-1183.
  • Lee, R.C., Feinbaum, R.L., Ambros, V., 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5): 843-854.
  • Li, D., Liu, Z., Gao, L., Wang, L., Gao, M., Jiao, Z., Qiao, H., Yang, J., Chen, M., Yao, L., Liu, R., Kan, Y., 2016. Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L. PLoS One, 11(4): e0153168.
  • Li, J. C., Guo, J. B., Xu, W. Z., Ma, M., 2007. RNA Interference-mediated Silencing of Phytochelatin Synthase Gene Reduce Cadmium Accumulation in Rice Seeds. Journal of Integrative Plant Biology, 49(7): 1032-1037.
  • Luan, M., Xu, M., Lu, Y., Zhang, L., Fan, Y., Wang, L., 2015. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene, 555(2): 178-185.
  • Nawaz-ul-Rehman, M. S., Mansoor, S., Khan, A. A., Zafar, Y., Briddon, R. W., 2007. RNAi-mediated male sterility of tobacco by silencing TA29. Mol Biotechnol, 36(2): 159-165.
  • Nie, Z., Ren, Z., Wang, L., Su, S., Wei, X., Zhang, X., Wu, L., Liu, D., Tang, H., Liu, H., Zhang, S., Gao, S., 2016. Genome-wide identification of microRNAs responding to early stages of phosphate deficiency in maize. Physiol Plant, 157(2): 161-174.
  • Nishihara, M., Nakatsuka, T., Yamamura, S., 2005. Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett, 579(27): 6074-6078.
  • Nogueira, F. T., Madi, S., Chitwood, D. H., Juarez, M. T., Timmermans, M. C., 2007. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev, 21(7): 750-5.
  • Pandolfini, T., 2009. Seedless fruit production by hormonal regulation of fruit set. Nutrients, 1(2): 168-177.
  • Poethig, R. S., 2013. Vegetative phase change and shoot maturation in plants. Curr Top Dev Biol, 105: 125-152.
  • Rogers, K., Chen, X., 2013. Biogenesis, Turnover, and Mode of Action of Plant MicroRNAs. The Plant Cell, 25(7): 2383-2399.
  • Shen, Y., Zhang, Z., Lin, H., Liu, H., Chen, J., Peng, H., Cao, M., Rong, T., Pan, G., 2011. Cytoplasmic male sterility-regulated novel microRNAs from maize. Funct Integr Genomics, 11(1): 179-191.
  • Shi, J., Lang, C., Wu, X., Liu, R., Zheng, T., Zhang, D., Chen, J., Wu, G., 2015. RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus. Biochem Biophys Res Commun, 466(3): 518-522.
  • Shriram , V., Kumar, V., Devarumath, R. M., Khare, T. S., Wani, S. H., 2016. MicroRNAs as potential targets for abiotic stress tolerance in Plants. Front. Plant Sci, 7(1): 817.
  • Sun, G., 2012. MicroRNAs and their diverse functions in plants. Plant Mol Biol, 80(1): 17-36.
  • Sunilkumar, G., Campbell, L. M., Puckhaber, L., Stipanovic, R. D., Rathore, K. S., 2006. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci U S A, 103(48): 18054-18059.
  • Van Eck, J., Conlin, B., Garvin, D. F., Mason, H., Navarre, D. A., Brown, C. R., 2007. Enhancing beta-carotene content in potato by rnai-mediated silencing of the beta-carotene hydroxylase gene. American Journal of Potato Research, 84(4): 331-342.
  • Waterhouse, P. M., Graham, M. W., Wang, M. B., 1998. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A, 95(23): 13959-13964.
  • Wu, X., Ding, D., Shi, C., Xue, Y., Zhang, Z., Tang, G., Tang, J., 2016. MicroRNA-dependent gene regulatory networks in maize leaf senescence. BMC Plant Biol, 16(1): 73.
  • Wu, F., Shu, J., Jin, W., 2014. Identification and validation of miRNAs associated with the resistance of maize (Zea mays L.) to Exserohilum turcicum. PLoS One, 9(1): e87251.
  • Xiong, A. S., Yao, Q. H., Peng, R. H., Li, X., Han, P. L., Fan, H. Q., 2005. Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Rep, 23(9): 639-646.
  • Xu, Z., Zhong, S., Li, X., Li, W., Rothstein, S. J., Zhang, S., Bi, Y., Xie, C., 2011. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS One, 6(11): e28009.
  • Yang , C., Li, D., Mao, D., Liu, X., Ji, C., Li, X., Zhao, X., Cheng, Z., Chen, C., Zhu, L., 2013. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ, 36(12): 2207-2218.
  • Yang , J. S., Phillips, M. D., Betel, D., Mu, P., Ventura, A., Siepel, A. C., Chen, K. C., Lai, E. C., 2011. Widespread regulatory activity of vertebrate microRNA* species. Rna, 17(2): 312-326.
  • Zhai, L., Liu, Z., Zou, X., Jiang, Y., Qiu, F., Zheng Y. Zhang, Z., 2013. Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings. Physiol Plant 147(2): 181-193.
  • Zhang, C., Ding, Z.,Wu, K., Yang, L., Li, Y., Yang, Z., Shi, S., Liu, X., Zhao, S., Yang, Z., Wang, Y., Zheng, L., Wei, J., Du, Z., Zhang, A., Miao, H., Li, Y., Wu, Z., Wu, J., 2016. Suppression of Jasmonic Acid-mediated Defense by Viral-inducible MicroRNA319 Facilitates Virus Infection in Rice. Molecular Plant, 9(9):1302-1314.
  • Zhang, L., Jing, F., Li, F., Li, M., Wang, Y., Wang, G., Sun, X., Tang, K., 2009. Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol Appl Biochem, 52(3): 199-207.
  • Zhou, Y., Xu, Z., Duan, C., Chen, Y., Meng, Q., Wu, J., Hao, Z., Wang, Z., Li, M., Yong, H., Zhang, D., Zhang, S., Weng, J., Li, X., 2016. Dual transcriptome analysis reveals insights into the response to Rice black-streaked dwarf virus in maize. J Exp Bot, 67(15): 4593-4609.