110R ANACI ÜZERİNE AŞILI ŞİRAZ ÜZÜM (Vitis vinifera L.) ÇEŞİDİNİN NaCl VE PROLİN UYGULAMALARINA KARŞI FİZYOLOJİK VE BİYOKİMYASAL TEPKİLERİ

Bitkilerde moleküler düzeyde stres tolerans mekanizmasının tam olarak anlaşılamaması, ıslah programlarının stres koşullarına toleranslı bitki çeşitleri geliştirmedeki başarı düzeyinisınırlamaktadır. Islah programlarına alternatif olarak, stres koşulları altında yetişitirilen bitkilerin tolerans seviyelerini artırmak için prolin gibi farklı organik bileşiklerin kullanımı artmaktadır. Bu çalışmada, NaCl stresi altında yetiştirilen Şiraz üzüm çeşidinin NaCl ve prolin uygulamalarına fizyolojik ve biyokimyasal tepkileri araştırılmıştır. İyon akışı (EL), sürgün büyüme oranı (SBO), klorofil, prolin, malondialdehit (MDA), ve süperokside dismütaz (SOD), peroksidaz (POD), katalaz (CAT), polifenol oksidaz (PPO) gibi antioksidan enzim aktiviteleri ölçülmüştür. NaCl stresseviyesine bağlı olarak, yaprak hücrelerindeki iyon akışı, klorofil degridasyonu, prolin ve MDA miktarlarında bir artış ölçülürken, prolin uygulanan gruplardan alınan yaprak örneklerinde ise buparametrelerde azalmalar belirlenmiştir. Araştırmada kullanılan prolin konsantrasyonları farklı seviyedeki NaCl stres koşullarında yetiştirilen Şiraz üzüm çeşidinin antioksidan enzim systemiüzerinde kısmi olarak etkili olduğu gözlemlenmiştir. Araştırmanın sonuçları, prolinin, bitki hücre zarı faz değişimi, lipid peroksidasyonu ve antioksidan enzim sistemlerinde aktif rol almışolababileceğini işaret etmektedir.

PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES OF SYRAH VINES (Vitis vinifera L.) GRAFTED ON 110 R ROOTSTOCK TO NaCl AND PROLINE APPLICATIONS

The success of breeding programs aimed stress tolerant plant varieties is limited by the lack of understanding of the molecular basis of salt tolerance. Alternatively to the breeding programs, the tolerance level of plants grown under stress conditions has been increased by using various organic solutes such as proline. In this study, physiological and biochemical responses of Syrah vines to NaCl stress and exogenously proline application were investigated. Electrolyte leakage (EL), shoot growth rate (SBO) chlorophyll, proline, malondialdehyde (MDA), and some of the antioxidant enzyme activities including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and polyphenol oxidase (PPO) were measured. Depended upon NaCl levels, an increase in electrolyte loss, chlorophyll degradation, proline, and MDA levels were observed. However, with the application of proline, these parameters were ameliorated in part. Proline concentrations used in this study were moderately effective on antioxidant enzyme system of Syrah grapevines grown under NaCl stress conditions. Our results may imply that the mechanism controlled by proline may involve effects on membrane phase changes, lipid peroxidation, and antioxidant enzyme systems.

___

Arnon, D.T. 1949. Copper enzymes in insolated chloroplast polyphenoloxidase in Beta vulgaris. Plant Physiology, 23: 1-15.

Badiani, M., De Biasi, M.G.D. ve Felici, M. 1990. Soluble peroxidase from winter wheat seedlings with phenoloxidase-like activity. Plant Physiology, 93: 489-494.

Badiani, M., Paolacci, A.R., D’Annibale, A. ve Sermanni, G.G. 1993. Antioxidants and photosynthesis in the leaves of Triticum durum L. seedlings acclimated to low, non-chilling temperature. Journal of Plant Physiology, 142:18-24.

Bates, L.S., Waldren, R.P. ve Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207

Bohnert, H. J. Ve Shen, B. 1999. Transformation and compatible solutes.Scientia Horticulturae, 78: 237–260.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72:248-254

Bray, E.A. 1997. Plant responses to water deficit. Trends in Plant Science, 2: 4854.

Chance, B. ve Maehly, A.C. 1955. Assay of catalase and peroxidases. Methods Enzymology, 2: 764-775.

Chowdhury, S.R. ve Shoudhuri, M.A. 1985. Hydrogen peroxide metabolism as an index of water stress tolerance in Jute. Physiologia Plantarum, 65: 476-480

Çelik, H., Ağaoglu, Y.S., Fidan, Y., Marasalı, B. ve Söylemezoğlu, G. 1998. Genel Bağcılık. Sun Fidan A.Ş. Mesleki Kitaplar Serisi: 1, Ankara.

Delauney, A. J. ve Verma, D. P. S. 1993. Proline biosynthesis and osmoregulation in plants. The Plant Journal, 4: 215–223.

Dhindsa, R.S., Plumb-Dhindsa, P. ve Thorpe, T.A. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase.Journal of Experimental Botany, 32: 93–101.

Downtown, W.J.S. 1977. Photosynthesis in salt-stressed grapevines. Australian Journal of Plant Physiology, 4: 183192.

Ehsanpour, AA., Fatahian, N. 2003. Effects of salt and proline on Medicago sativa callus. Plant Cell Tissue and Organ Culture, 73: 53–56.

Elstner, E.F. 1982. Oxygen activation and toxicity. Annual Review of Plant Physiology, 33: 73-96.

Fisarakis, I., Chartzoulakis, K., Stavrakas, D. 2001. Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agricultural Water Management, 51: 13-27.

Gadallah, M.A.A. 1995. Effects of waterlogging and kinetin on the stability of leaf membranes, leaf osmotic potential, soluble carbon and nitrogen compounds and chlorophyll content of Ricinus plants. Phyton, 35: 199-208.

Gadallah, M.A.A. 1999. Effects of proline glycine betaine on Vicia faba responses to salt stress. Biologia Plantarum, 42(2): 249-257.

Gutteridge, J.M. 1977. The effects of calcium on phospholipid peroxidation. Biochemical and Biophysical Research Communications, 74: 529-37.

Heath, R.L. ve Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125: 189-198.

Hideg, E. 1997. Free radical production in photosynthesis under stress conditions. In: Pessarakli, M., (ed.) Handbook of Photosynthesis. Marcel Decker, New York, pp. 911–930.

Hoagland D.R. ve Arnon, D.I. 1950. The water-culture method for growing plants without soil. Circular 347. Agricultural Experiment Station, University of California, Berkeley.

Kaya, C., Tuna, A.L., Ashraf, M. ve Altunlu, H. 2007. Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environmental and Experimental Botany, 60:397- 403.

Kohl, D.H., Keennelly, E.H., Zhu, Y., Schubert, K.R. ve Shearer, G.1991. Proline accumulation, nitrogenase(C2H2reducing) activity and activities of enzymes related to proline metabolism in drought stressed soybean nodules. Journal of Experimental Botany, 42:831– 837.

Lin, C.C., Hsu, Y.T. ve Kao, C.H. 2002. The effect of NaCl on Proline accumulation in rice leaves. Plant Growth Regulation, 36(3): 275-278.

McCarthy, M.G., Jones, L.D. ve Due, G. 1992. Irrigation, principles and practices. In: Coombe, B.G.,Dry, P.R. (Eds.), Viticulture, vol. II. Practices, Adelaide, Australia, pp. 104- 128

Ozden, M., Demirel, U. ve Kahraman, A. 2009. Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119: 163-168.

Sairam, R.K., Srivastava, G.C., Agarwal, S. ve Meena, R.C. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biological Plantarum, 49(1): 85–91.

SAS, 1995. SAS/STAT User’s Guide. Version 6.12. SAS Institute, Cary, North Carolina.

Scandolios, J.G. 1993. Oxygen stress and superoxide dismutase. Plant Physiology, 101: 7-12.

Walker, R.R., Torokfaly, E., Scott, N.S. ve Kriedemann, P.E. 1981. An analysis of photosynthetic response to salt treatment in Vitis vinifera L. Australian Journal of Plant Physiology, 8: 359-374.

Williams, L.R. ve Matthews, M.A. 1990. Grapevine. Irrigation of Agricultural Crops. Agr. Monog. No 30, ASA-CSSA- SSSA, Madison, WI 53711, USA, pp. 1019-1055.

Winston, G.W. 1990. Physiological basis for free radical formation in cell: Production and defenses. In Stress Responses in plants: Adaptation and Acclimation Mechanisms. Edited by Alscher, R.G. and Cumming, J.R. pp,57-86. Wiley- Liss, Inc., New York.

Woodward, A.J. ve Bennett, I.J. 2005. The effect of salt stress and abscisic on proline production, chlorophyll content and growth of in vitro propagated shoots of Eucalyptus camaldulensis. Plant Cell Tissue and Organ Culture, 82: 189–200.

Zauberman G, Ronen R, Akerman M, Weksler A., Rot, I. ve Fuchs Y. 1991.Postharvest retention of the red colour of litchi fruit pericarp. Scientia Horticulturae, 47: 89-97.

___

APA Özden, M. , Dikilitaş, M. , Gürsöz, S. & Ak, B. (2014). 110R ANACI ÜZERİNE AŞILI ŞİRAZ ÜZÜM (Vitis vinifera L.) ÇEŞİDİNİN NaCl VE PROLİN UYGULAMALARINA KARŞI FİZYOLOJİK VE BİYOKİMYASAL TEPKİLERİ . Harran Tarım ve Gıda Bilimleri Dergisi , 15 (1) , 1-9 .