How is a Science Lesson Developed and Implemented Based on Multiple Intelligences Theory?

Bu çalışmanın amacı, Çoklu Zeka Kuramına dayalı bir fen bilgisi dersinin nasıl planlanabileceği ve uygulanabileceğiyle ilgili tüm süreci adım adım sunmaktır. Çalışmada, öncelikle Çoklu Zeka Kuramının fen öğretimi ve öğrenimi açısından sahip olduğu potansiyel sunulmaktadır. Daha sonra, literatüre dayalı geliştirilmiş ve ilköğretim 8. sınıfta uygulanmış Çoklu Zeka Kuramına dayalı bir fen bilgisi dersi, fen bilgisi öğretmen adayı ve öğretmenlerine Çoklu Zeka Kuramını teoriden sınıf içi pratiğe dönüştürmede yardımcı olmak amacıyla somut bir örnek olarak verilmektedir. Bu çalışma, çoklu zeka fen bilgisi derslerinin nasıl planlanacağı ve uygulanacağı ile ilgili dört önemli faktör açığa çıkarmıştır. Bu faktörler, (1) güvenilir ve geçerli bir ölçme aracı ile öğrencierin çoklu zekalarını belirlemek, (2) ilgili fen konusunda literatürde bulunan öğrencilerin öğrenme sorunlarına dikkat etmek, (3) öğrencilerin öğrenmesi amaçlanan bilgi yapısını çoklu zekalar açısından dikkate almak, ve (4) öğretmenin çoklu zeka aktivitesini sınıf içinde uygulama kabiliyetini sınamasıdır.

Çoklu Zeka Kuramına Dayalı Bir Fen Bilgisi Dersi Nasıl Geliştirilir ve Uygulanır?

The purpose of this study is to present the whole process step-by-step of how a science lesson can be planned and implemented based on Multiple Intelligences (MI) theory. First, it provides the potential of the MI theory for science teaching and learning. Then an MI science lesson that was developed based on a modified model in the literature and implemented in an 8th grade classroom is given as a concrete example in order to help preservice and inservice science teachers to create bridges from the theoretical framework of the MI theory into classroom practice. This study uncovers that there are four important factors affecting how MI science lessons are planned and carried out. They are: (1) identifying individual students’ multiple intelligences or strengths via a reliable and valid tool, (2) paying attention to the literature findings related to students’ difficulties in learning the relevant science topic, (3) considering the nature of the knowledge structure that students are supposed to learn with respect to the MI, and (4) examining teacher’s ability to manage the MI activity.

___

  • American Association for the Advancement of Science. (1993). Benchmarks for Science Literacy. New York: Oxford University Press.
  • Armstrong, T. (1994). Multiple intelligences in the classroom. Alexandria, VA: Association for Supervision and Curriculum Development. Alexandria, Virginia USA.
  • Armstrong, T. (2000). Multiple intelligences in the classroom. (2nd edition) Alexandria, VA: Association for Supervision and Curriculum Development. Alexandria, Virginia USA.
  • Ausubel, D.P. (1968). Educational Psychology. A Cognitive View. New York: Holt, Rinehart and Winston.
  • Akamca, G. Ö. & Hamurcu, H. (2005). Çoklu zeka kuramı tabanlı öğretimin öğrencilerin fen başarısı, tutumları ve hatırda tutma üzerindeki etkileri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28, 178-187.
  • Azar, A., İrfan, A.P., & Balkaya, Ö. (2006). Çoklu zeka kuramına dayalı öğretimin öğrencilerin başarı, tutum, hatırlama ve bilişsel süreç becerilerine etkisi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 30, 45-54.
  • Campbell, L. (1997). How Teachers Interpret MI Theory. Educational Leadership, 55, 14-19.
  • Campbell, L., Campbell, B., & Dickinson, D. (1996). Teaching and learning through multiple intelligences. New York: Basic Books.
  • Checkley, K. (1997). The first seven and the eighth: A conversation with Howard Gardner. Educational Leadership, 55(9), 8–13.
  • Daniel, T. K. (1997). Atomic activities. The Science Teacher, 64 (3), 34-37.
  • Ebenezer, J. V., & Haggerty, M. S. (1999). Becoming a secondary school science teacher. Merill Press, New Jersey.
  • Ebenezer, J. V. & Zoller, U. (1993). Grade 10 Students' perceptions of and attitudes toward science teaching and school science. Journal of Research in Science Teaching, 30(2), 175-186.
  • Eisner, E. W. (2004). Multiple Intelligences: Its Tensions and Possibilities. Teachers College Record, 106(1), 31-39.
  • Flick, L. & Lederman, N. (2003). Editorial: Popular Theories - Unpopular Research. School Science and Mathematics, 103(3), 117-120.
  • Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.
  • Gardner, H. (1985). The mind’s new science: A history of the cognitive revolution. New York: Basic Books.
  • Gardner, H. (1993). Multiple intelligences: The theory in practice. New York: Basic Books.
  • Gardner, H. (1995). Reflections on multiple intelligences. Phi Delta Kappan, 77(3), 200-208.
  • Gardner, H. (1997). Multiple Intelligences as a Partner in School Improvement. Educational Leadership, 55(9), 20-21.
  • Goodnough, K. (2001a). Multiple intelligences theory: A framework for personalizing science curricula. School Science and Mathematics, 101(4), 180-193.
  • Goodnough, K. (2001b). Enhancing professional knowledge: A case study of an elementary teacher. Canadian Journal of Education, 26(2), 218-236.
  • Haley, M. H. (2004). Learner-Centered Instruction and the Theory of Multiple Intelligences With Second Language Learners. Teachers College Record, 106(1), 163-180.
  • Harrison, A.G., & Treagust. D.F. (1996). Secondary Students’ Mental Models of Atoms and Molecules: Implications for Teaching Chemistry. Science Education, 80(5), 509-534.
  • Hoerr, T (2004). How MI Informs Teaching at New City School. Teachers College Record, 106(1), 40-48.
  • Kaya, O. N. (2006). Multiple Intelligences in Global Perspectives: Howard Gardner (Harvard University) and International Panel. Invited panelist from Turkey at the Annual Conference of the American Educational Research Association, San Francisco, CA.
  • Kaya, O. N., Dogan, A., Gökçek, N., Kılıç, Z. & Kılıç, E. (2007, April) Comparing Multiple Intelligences Approach With Traditional Teaching on Eight Grade Students’ Achievement in and Attitudes toward Science. Paper presented at the Annual Conference of the American Educational Research Association, Chicago, IL.
  • Kaya, O. N. & Ebenezer, J., (2003, April). The effects of implementation of the multiple intelligences theory on grade-7 students’ attitudes and perceptions toward science. Paper presented at the Annual Conference of the American Educational Research Association (AERA), Chicago, IL. (Awarded paper by Scientific Research Committee of AERA).
  • Kaya, O. N., & Ebenezer, J. (2006, April). Invisible Obstacles on the Implementation of Multiple Intelligences Theory in K-8 Classrooms in Turkey. Paper presented at the Annual Conference of the American Educational Research Association, San Francisco, CA.
  • Lazear, D. (1992). Teaching for Multiple Intelligences. Fastback 342 Bloomington, IN: Phi Delta Kappan Educational Foundation. (ERIC Document Reproduction Service No. ED 356 227)
  • Morrison, J.A. & Lederman, N.G. (2003). Science teachers’ diagnosis and understanding of students’ preconceptions. Science Education, 87(6), 849-867.
  • National Research Council (NRC) (1996). National science education standards. Washington, DC: National Academy Press.
  • Shearer, C.B. (1994a). Çoklu Zekaları Değerlendirme Anketi Öğrenci Formu (Multiple Intelligences Developmental Assessment Scales, MIDAS). Çeviri: O.N. Kaya, Ankara: Gazi Üniversitesi Özel İlköğretim Okulu Yayınları.
  • Shearer, C. B. (2004). Using a Multiple Intelligences Assessment to Promote Teacher Development and Student Achievement. Teachers College Record, 106 (1), 147-162.
  • Shearer, C. B. (2007). MIDAS information. Retrieved January 12, 2007, from http://www.miresearch.org/midas.php and http://www.miresearch.org/
  • Talu, N. (1999). Çoklu Zeka Kuramı ve Eğitime Yansımaları. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 15, 164-172.
  • Tuğrul, B. & Duran, E. (2003). Her çocuk başarılı olmak için bir şansa sahiptir: zekanın çok boyutluluğu çoklu zeka kuramı. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 24, 224-233.