Kuru Toz İnhalerler: Formülasyonlar ve Aerodinamik Davranışlar
İnhalerler genel olarak; nebülizer, ölçülü doz inhaler ve kuru toz inhaler (KTİ) başlıkları altında incelenebilir. KTİ’ler, hem lokal hem de sistemik etki elde etmek amacıyla kullanılabilen inhaler formülasyonlarıdır. İnhalerlerin etki mekanizmalarının değerlendirilmesi aşamasında, solunum sisteminin anatomi ve fizyolojisinin anlaşılması önemli bir husustur. KTİ’lerde ilaç etkinliğini etkileyen en önemli unsur partiküllerin aerodinamik davranışlarıdır. Aerodinamik davranışları değerlendirmek için; Cam İkili Ayrıştırıcı, Marple Miller Kademeli Ayrıştırıcı, Andersen Kademeli Ayrıştırıcı, Çok Aşamalı Sıvı Ayrıştırıcı, Yeni Nesil Ayrıştırıcı gibi Avrupa ve Amerika Birleşik Devletleri Farmakopeleri’nde kayıtlı cihazlar kullanılmaktadır. KTİ formülasyonlarında etkin maddenin akciğerlerde dağılmasını sağlayabilmek için, partiküllerin 5 µm’den küçük olması istenir. Bu nedenle partikül büyüklüğü dağılımı, formülasyondaki en önemli yanıt değişkenlerden birisidir. Püskürterek kurutma yöntemi hem endüstriye uygulanabilirlik yönünden, hem de 5 μm’nin altında partikül üretimi için uygun yöntemlerden biridir. Üretim parametreleri değiştirilerek; partikül büyüklüğü, partikül büyüklüğü dağılımı, dansite, şekil, yük, salım hızı gibi ölçütler optimize edilebilmektedir. Sonuç olarak, KTİ’ler, birçok üstünlüğü bulunan ve sıklıkla tercih edilen bir sistemdir.
Dry Powder Inhalers: Formulations and Aerodynamic Behaviours
Inhalers can generally be examined under the titles: nebulizer, metered dose inhaler and dry powder inhaler (DPI). DPIs are inhaler formulations that can be used to achieve both local and systemic effects. During the assessment of the mechanisms of action of inhalers, understanding of the anatomy and physiology of the respiratory system is an important issue. The most important factor affecting drug efficacy in DPIs is the aerodynamic behavior of the particles. To evaluate aerodynamic behaviors; Glass Twin Impinger, Marple Miller Cascade Impactor, Andersen Cascade Impactor, Multi Stage Liquid Impinger, Next Generation Impactor, which are registered in European and United States Pharmacopoeia, are used. In DPI formulations, it is desirable that the particles be less than 5 µm in order to be able to distribute the active substance in the lungs. For this reason, particle size distribution is one of the most important responsevariables in the formulation. Spray drying is one of the suitable methods for particle production below 5 μm and for applicability to the industry. By changing production parameters; particle size, particle size distribution, density, shape, charge, release rate can be optimized. As a result, DPIs are a system of many advantages and often preferred.
___
- 1. Rodrigo GJ: Rapid effects of inhaled corticosteroids in acute asthma.
Chest 2006, 130(5):1301-11.
- 2. Erin EM, Zacharasiewicz AS, Nicholson GC, Tan AJ, Neighbour H,
Engelstätter R, et al: Rapid effect of inhaled ciclesonide in asthma.
Chest 2008, 134(4):740-5.
- 3. Scheuch G, Zimlich WC, Siekmeier R. Biophysical Parameters Determining
Pulmonary Drug Delivery. In: BechtoldPeters K, Luessen
H (eds), Pulmonary Drug Delivery, Druckerei Marquart GmbH,
Stuttgart, Germany. 2007:17-46.
- 4. Blau H, Mussaffi H, Mei Zahav M, Prais D, Livne M, Czitron BM,
et al: Microbial contamination of nebulizers in the home treatment
of cystic fibrosis. Child: Care, Health and Development 2007,
33(4):491-5.
- 5. Cohen HA, Cohen Z, Pomeranz AS, Czitron B, Kahan E: Bacterial
contamination of spacer devices used by asthmatic children. Journal
of Asthma 2005, 42(3):169-72.
- 6. de Vries TW, Rienstra SR, van der Vorm ER: Bacterial contamination
of inhalation chambers: results of a pilot study. Journal of Aerosol
Medicine 2004, 17(4):354-6.
- 7. Sung JC, Pulliam BL, Edwards DA: Nanoparticles for drug delivery
to the lungs. Trends in Biotechnology 2007, 25(12):563-70.
- 8. Castelli F, Conti B, Conte U, Puglisi G: Effect of molecular weight
and storage times on tolmetin release from poly-d,l-lactide microspheres
to lipid model membrane. A calorimetric study. Journal of
Controlled Release 1996, 40(3):277-84.
- 9. Dickinson PA, Kellaway IW, Taylor G, Mohr D, Nagels K, Wolff
H-M: In vitro and in vivo release of estradiol from an intra-muscular
microsphere formulation. International Journal of Pharmaceutics
1997, 148(1):55-61.
- 10. 2.9.18. Preparations For Inhalation: Aerodynamic Assessment of
Fine Particles. European Pharmacopoeia 51. 5.1. p. 2799-811.
- 11. USP Pharmacopoeial Forum Volume 28, Number 2, 2002, p. 601-
603.
- 12. Courrier HM, Butz N, Vandamme TF: Pulmonary drug delivery
systems: recent developments and prospects. Critical Reviews in
Therapeutic Drug Carrier Systems 2002, 19(4-5):425-98.
- 13. Zhao X, Ju Y, Liu C, Li J, Huang M, Sun J, et al: Bronchial anatomy
of left lung: a study of multi-detector row CT. Surgical and Radiologic
Anatomy 2009, 31(2):85-91.
- 14. Fahlman A: The pressure to understand the mechanism of lung
compression and its effect on lung function. Journal of Applied
Physiology 2008, 104(4):907-8.
- 15. Kohlhaufl M. Understanding Clinical Aerosol Therapy: Physiological
Aspects of the Respiratory System and Current İnhalation
Therapy in Chronic Obstructive Pulmonary Disease and Asthma.
In: BechtoldPeters K, Luessen H (eds), Pulmonary Drug Delivery,
Druckerei Marquart GmbH, Stuttgart, Germany. 2007:12-16.
- 16. Gaughan C, Panos AL. Anatomy of the Lungs. In: Gabriel EA, Salerno
T (eds), Principles of Pulmonary Protection in Heart Surgery.
Springer, London, England. 2010:3-8.
- 17. Taylor, K. Pulmonary Drug Delivery. In: Aulton ME (eds), Pharmaceutics,
The Science of Dosage Form Design. Elsevier Limited,
Spain. 2002: 473-488.
- 18. O’Donnell KP, Smyth HDC. Macro- and Microstructure of the
Airways for Drug Delivery. In: Smyth H, Hickey A (eds), Controlled
Pulmonary Drug Delivery. Springer-Verlag, London, England.
2014:1-20.
- 19. Aerosal&aerosal Drug Delivery System; 2017 February 19.
Available from: http://www.slideshare.net/AllergyChula/aerosalaerosal-
drug-delivery-system [Website]
- 20. Bur M, Bock U, Haltner-Ukomadu E, Lehr CM. In Vitro Models for
Pulmonary Drug Absorption. In: BechtoldPeters K, Luessen H (eds),
Pulmonary Drug Delivery, Druckerei Marquart GmbH, Stuttgart,
Germany. 2007:47-58.
- 21. Houtmeyers E, Gosselink R, Gayan-Ramirez G, Decramer M: Regulation
of mucociliary clearance in health and disease. The European
Respiratory Journal 1999, 13(5):1177-88.
- 22. Evora C, Soriano I, Rogers RA, Shakesheff KN, Hanes J, Langer R:
Relating the phagocytosis of microparticles by alveolar macrophages
to surface chemistry: the effect of 1,2-dipalmitoylphosphatidylcholine.
Journal of Controlled Release 1998, 51(2-3):143-52.
- 23. Ng K-y, Stringer KA, Cohen Z, Serravo R, Tian B, Meyer JD, et
al: Alveolar macrophage cell line is not activated by exposure to
polymeric microspheres. International Journal of Pharmaceutics
1998, 170(1):41-9.
- 24. Labiris NR, Dolovich MB: Pulmonary drug delivery. Part I:
physiological factors affecting therapeutic effectiveness of aerosolized
medications. British Journal of Clinical Pharmacology 2003,
56(6):588-99.
- 25. Groneberg DA, Witt C, Wagner U, Chung KF, Fischer A: Fundamentals
of pulmonary drug delivery. Respiratory Medicine 2003,
97(4):382-7.
- 26. Brzoska M, Langer K, Coester C, Loitsch S, Wagner TO, Mallinckrodt
C: Incorporation of biodegradable nanoparticles into human
airway epithelium cells-in vitro study of the suitability as a vehicle
for drug or gene delivery in pulmonary diseases. Biochemical and
Biophysical Research Communications 2004, 318(2):562-70.
- 27. Jansen M, Darby I, Abribat T, Dubreuil P, Ferdinandi ES, Hardy JG:
Pulmonary delivery of TH9507, a growth hormone releasing factor
analogue, in the dog. International Journal of Pharmaceutics 2004,
276(1–2):75-81.
- 28. Bosquillon C, Préat V, Vanbever R: Pulmonary delivery of growth
hormone using dry powders and visualization of its local fate in rats.
Journal of Controlled Release 2004, 96(2):233-44.
- 29. Bivas-Benita M, van Meijgaarden KE, Franken KLMC, Junginger
HE, Borchard G, Ottenhoff THM, et al: Pulmonary delivery of
chitosan-DNA nanoparticles enhances the immunogenicity of a
DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of
Mycobacterium tuberculosis. Vaccine 2004, 22(13–14):1609-15.
- 30. Reynolds PN: Delivery of DNA to pulmonary endothelium using
adenoviral vectors. Methods in Molecular Biology 2004, 246:69-89.
- 31. Brain JD: Inhalation, deposition, and fate of insulin and other therapeutic
proteins. Diabetes Technology & Therapeutics 2007, 9 Suppl
1:S4-S15.
- 32. Okamoto H, Todo H, Iida K, Danjo K: Dry powders for pulmonary
delivery of peptides and proteins. Kona 2002, 20:71-83.
- 33. Johnson KA: Preparation of peptide and protein powders for inhalation.
Advanced Drug Delivery Reviews 1997, 26(1):3-15.
- 34. Ruffin RE, Dolovich MB, Wolff RK, Newhouse MT: The effects
of preferential deposition of histamine in the human airway. The
American Review of Respiratory Disease 1978, 117(3):485-92.
- 35. Hussain A, Arnold JJ, Khan MA, Ahsan F: Absorption enhancers
in pulmonary protein delivery. Journal of Controlled Release 2004,
94(1):15-24.
- 36. Koshkina NV, Agoulnik IY, Melton SL, Densmore CL, Knight V:
Biodistribution and pharmacokinetics of aerosol and intravenously
administered DNA-polyethyleneimine complexes: optimization
of pulmonary delivery and retention. Molecular Therapy 2003,
8(2):249-54.
- 37. Karlowicz MG. Long-term pulmonary consequences of elective
cesarean delivery. Jama 2002, 288(11):1352.
- 38. Mozafari MR, Reed CJ, Rostron C, Kocum C, Piskin E: Formation
and characterisation of non-toxic anionic liposomes for delivery of
therapeutic agents to the pulmonary airways. Cellular and Molecular
Biology Letters 2002, 7(2):243-4.
- 39. Bruck A, Abu-Dahab R, Borchard G, Schafer UF, Lehr CM: Lectin-
functionalized liposomes for pulmonary drug delivery: interaction with
human alveolar epithelial cells. Journal of Drug Targeting
2001, 9(4):241-51.
- 40. Emami J, Hamishehkar H, Najafabadi AR, Gilani K, Minaiyan M,
Mahdavi H, et al: Particle size design of PLGA microspheres for
potential pulmonary drug delivery using response surface methodology.
Journal of Microencapsulation 2009, 26(1):1-8.
- 41. Chono S, Tanino T, Seki T, Morimoto K: Influence of particle size
on drug delivery to rat alveolar macrophages following pulmonary
administration of ciprofloxacin incorporated into liposomes. Journal
of Drug Targeting 2006, 14(8):557-66.
- 42. Adjei A, Garren J: Pulmonary delivery of peptide drugs: effect of
particle size on bioavailability of leuprolide acetate in healthy male
volunteers. Pharmaceutical Research 1990, 7(6):565-9.
- 43. Rees PJ, Clark TJ, Moren F: The importance of particle size in
response to inhaled bronchodilators. European Journal of Respiratory
Diseases 1982, 119:73-8.
- 44. Ashurst II, Malton A, Prime D, Sumby B: Latest advances in the
development of dry powder inhalers. Pharmaceutical Science &
Technology Today 2000, 3(7):246-56.
- 45. Çelebi, N. Nazal ve Pulmoner Sistemler. In: Gürsoy AZ (eds),
Kontrollü Salım Sistemleri. Kontrollü Salım Sistemleri Derneği
Yayınları, İstanbul, Turkey. 2002:217‐237.
- 46. Sezgi C, Özbay B, Kara M, Doğan E, İşlek A, Uzun K: Astım ve
KOAH’lı hastalar için inhaler seçiminde inspiratuar akım hızının
önemi. Tıp Araştırmaları Dergisi 2004, 2(2):1-6.
- 47. Boyacı H, Yücesoy L, Yıldız F, Ilgazlı A, Başyiğit İ: Astımlı hastalarda
formoterol, salmeterol, salbutamol ve ipratropium bromürün
etki başlama sürelerinin karşılaştırılması. Solunum Hastalıkları
2004, 15:1-7.
- 48. Türktaş İ: Çocuklarda inhalasyon tedavisi. Türk Toraks Dergisi
2002, 3(0):32-4.
- 49. Köse S, Karaman Ö, Uzuner N, Ellidokuz H, Turgut CŞ, Tezcan D:
Bronşiyal astımlı çocuklarda formoterol kullanımının klinik etkileri.
Toraks Dergisi 2003, 4(2):168-72.
- 50. Frijlink HW, de Boer AH. Nebulization and Administration Devices.
In: BechtoldPeters K, Luessen H (eds), Pulmonary Drug Delivery,
Druckerei Marquart GmbH, Stuttgart, Germany. 2007:103-124.
- 51. O’Callaghan C, Barry PW: The science of nebulised drug delivery.
Thorax 1997, 52 Suppl 2:S31-44.
- 52. Le Brun PP, de Boer AH, Gjaltema D, Hagedoorn P, Heijerman
HG, Frijlink HW: Inhalation of tobramycin in cystic fibrosis. Part
2: optimization of the tobramycin solution for a jet and an ultrasonic
nebulizer. International Journal of Pharmaceutics 1999, 189(2):215-
25.
- 53. Flament MP, Leterme P, Gayot A: Influence of the technological
parameters of ultrasonic nebulisation on the nebulisation quality
of alpha1 protease inhibitor (alpha1PI). International Journal of
Pharmaceutics 1999, 189(2):197-204.
- 54. Hess DR: Metered-dose inhalers and dry powder inhalers in aerosol
therapy. Respiratory Care 2005, 50(10):1376-83.
- 55. Cipolla D, Chan HK, Schuster J, Farina D: Personalizing aerosol
medicine: development of delivery systems tailored to the individual.
Therapeutic Delivery 2010, 1(5):667-82.
- 56. Geller DE, Konstan MW, Smith J, Noonberg SB, Conrad C: Novel
tobramycin inhalation powder in cystic fibrosis subjects: pharmacokinetics
and safety. Pediatric Pulmonology 2007, 42(4):307-13.
- 57. Konstan MW, Flume PA, Kappler M, Chiron R, Higgins M, Brockhaus
F, et al: Safety, efficacy and convenience of tobramycin
inhalation powder in cystic fibrosis patients: The EAGER trial.
Journal of Cystic Fibrosis 2011, 10(1):54-61.
- 58. Smith IJ, Parry-Billings M: The inhalers of the future? A review of
dry powder devices on the market today. Pulmonary Pharmacology
& Therapeutics 2003, 16(2):79-95.
- 59. Telko MJ, Hickey AJ: Dry powder inhaler formulation. Respiratory
Care 2005, 50(9):1209-27.
- 60. Coates MS, Chan HK, Fletcher DF, Raper JA: Influence of air flow
on the performance of a dry powder inhaler using computational and
experimental analyses. Pharmaceutical Research 2005, 22(9):1445-
53.
- 61. Son YJ, McConville JT: A new respirable form of rifampicin.
European Journal Of Pharmaceutics and Biopharmaceutics 2011,
78(3):366-76.
- 62. Srichana T, Martin GP, Marriott C: Dry powder inhalers: the influence
of device resistance and powder formulation on drug and lactose
deposition in vitro. European Journal of Pharmaceutical Sciences
1998, 7(1):73-80.
- 63. Quality Solutions for Inhaler Testing; 2017 March 14. Available
from: http://www.copleyscientific.com/files/ww/brochures/
Inhaler%20Testing%20Brochure%202015_Rev4_Low%20Res.pdf.
[Website]
- 64. Marek SR, Donovan MJ, Smyth HD: Effects of mild processing
pressures on the performance of dry powder inhaler formulations for
inhalation therapy. 1: Budesonide and lactose. European Journal of
Pharmaceutics and Biopharmaceutics 2011, 78(1):97-106.
- 65. Zhou QT, Morton DA: Drug-lactose binding aspects in adhesive
mixtures: controlling performance in dry powder inhaler formulations
by altering lactose carrier surfaces. Advanced Drug Delivery
Reviews 2012, 64(3):275-84.
- 66. Kaialy W, Martin GP, Larhrib H, Ticehurst MD, Kolosionek E,
Nokhodchi A: The influence of physical properties and morphology
of crystallised lactose on delivery of salbutamol sulphate from dry
powder inhalers. Colloids and Surfaces B: Biointerfaces 2012,
89:29-39.
- 67. Donovan MJ, Smyth HD: Influence of size and surface roughness
of large lactose carrier particles in dry powder inhaler formulations.
International Journal of Pharmaceutics 2010, 402(1-2):1-9.
- 68. Steckel H, Bolzen N: Alternative sugars as potential carriers
for dry powder inhalations. International Journal of Pharmaceutics 2004,
270(1-2):297-306.
- 69. Zhou QT, Qu L, Larson I, Stewart PJ, Morton DA: Improving aerosolization
of drug powders by reducing powder intrinsic cohesion
via a mechanical dry coating approach. International Journal of
Pharmaceutics 2010, 394(1-2):50-9.
- 70. Zhou QT, Qu L, Gengenbach T, Larson I, Stewart PJ, Morton DA:
Effect of surface coating with magnesium stearate via mechanical
dry powder coating approach on the aerosol performance of micronized
drug powders from dry powder inhalers. AAPS PharmSciTech
2013, 14(1):38-44.
- 71. Zhou QT, Denman JA, Gengenbach T, Das S, Qu L, Zhang H, et al:
Characterization of the surface properties of a model pharmaceutical
fine powder modified with a pharmaceutical lubricant to improve
flow via a mechanical dry coating approach. Journal of Pharmaceutical
Sciences 2011, 100(8):3421-30.
- 72. Zhou QT, Armstrong B, Larson I, Stewart PJ, Morton DA: Understanding
the influence of powder flowability, fluidization and de-agglomeration
characteristics on the aerosolization of pharmaceutical
model powders. European Journal of Pharmaceutical Sciences 2010,
40(5):412-21.
- 73. Parlati C, Colombo P, Buttini F, Young PM, Adi H, Ammit AJ, et al:
Pulmonary spray dried powders of tobramycin containing sodium
stearate to improve aerosolization efficiency. Pharmaceutical Research
2009, 26(5):1084-92.
- 74. Belotti S, Rossi A, Colombo P, Bettini R, Rekkas D, Politis S, et
al: Spray dried amikacin powder for inhalation in cystic fibrosis
patients: a quality by design approach for product construction.
International Journal of Pharmaceutics 2014, 471(1-2):507-15.
- 75. Sou T, Kaminskas LM, Nguyen TH, Carlberg R, McIntosh MP,
Morton DA: The effect of amino acid excipients on morphology and
solid-state properties of multi-component spray-dried formulations
for pulmonary delivery of biomacromolecules. European Journal of
Pharmaceutics and Biopharmaceutics 2013, 83(2):234-43.
- 76. Sou T, Orlando L, McIntosh MP, Kaminskas LM, Morton DA:
Investigating the interactions of amino acid components on a
mannitol-based spray-dried powder formulation for pulmonary
delivery: A design of experiment approach. International Journal of
Pharmaceutics 2011, 421(2):220-9.
- 77. Hoe S, Ivey JW, Boraey MA, Shamsaddini-Shahrbabak A, Javaheri
E, Matinkhoo S, et al: Use of a fundamental approach to spray-drying
formulation design to facilitate the development of multi-component
dry powder aerosols for respiratory drug delivery. Pharmaceutical
Research 2014, 31(2):449-65.
- 78. Paajanen M, Katainen J, Raula J, Kauppinen EI, Lahtinen J: Direct
evidence on reduced adhesion of salbutamol sulphate particles due
to L-leucine coating. Powder Technology 2009, 192(1):6-11.
- 79. Raula J, Thielmann F, Naderi M, Lehto V-P, Kauppinen EI: Investigations
on particle surface characteristics vs. dispersion behaviour
of L-leucine coated carrier-free inhalable powders. International
Journal of Pharmaceutics 2010, 385(1–2):79-85.
- 80. Elhissi AMA, Taylor KMG: Delivery of liposomes generated
from proliposomes using air-jet, ultrasonic, and vibrating-mesh
nebulisers. Journal of Drug Delivery Science and Technology 2005,
15(4):261-5.
- 81. Song K-H, Chung S-J, Shim C-K: Preparation and evaluation of
proliposomes containing salmon calcitonin. Journal of Controlled
Release 2002, 84(1–2):27-37.
- 82. Rojanarat W, Changsan N, Tawithong E, Pinsuwan S, Chan H-K,
Srichana T: Isoniazid proliposome powders for inhalation—preparation,
characterization and cell culture studies. International Journal
of Molecular Sciences 2011, 12(7):4414.
- 83. Patil-Gadhe A, Pokharkar V: Single step spray drying method to
develop proliposomes for inhalation: a systematic study based on
quality by design approach. Pulmonary Pharmacology & Therapeutics
2014, 27(2):197-207.
- 84. Salama RO, Traini D, Chan H-K, Sung A, Ammit AJ, Young PM:
Preparation and evaluation of controlled release microparticles for
respiratory protein therapy. Journal of Pharmaceutical Sciences
2009, 98(8):2709-17.
- 85. Roberts RA, Shen T, Allen IC, Hasan W, DeSimone JM, Ting JP:
Analysis of the murine immune response to pulmonary delivery of
precisely fabricated nano- and microscale particles. Plos One 2013,
8(4):e62115.
- 86. Dailey LA, Jekel N, Fink L, Gessler T, Schmehl T, Wittmar M, et
al: Investigation of the proinflammatory potential of biodegradable
nanoparticle drug delivery systems in the lung. Toxicology and
Applied Pharmacology 2006, 215(1):100-8.
- 87. Tomashefski JF, Cohen AM, Doershuk CF: Longterm histopathologic
follow-up of bronchial arteries after therapeutic embolization
with polyvinyl alcohol (Ivalon) in patients with cystic fibrosis.
Human Pathology 1988, 19(5):555-61.
- 88. Sham JO, Zhang Y, Finlay WH, Roa WH, Lobenberg R: Formulation
and characterization of spray-dried powders containing
nanoparticles for aerosol delivery to the lung. International Journal
of Pharmaceutics 2004, 269(2):457-67.
- 89. Wang Y, Kho K, Cheow WS, Hadinoto K: A comparison between
spray drying and spray freeze drying for dry powder inhaler
formulation of drug-loaded lipid–polymer hybrid nanoparticles.
International Journal of Pharmaceutics 2012, 424(1–2):98-106.
- 90. Yamasaki K, Kwok PCL, Fukushige K, Prud’homme RK, Chan
H-K: Enhanced dissolution of inhalable cyclosporine nano-matrix
particles with mannitol as matrix former. International Journal of
Pharmaceutics 2011, 420(1):34-42.
- 91. Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA: Trojan
particles: large porous carriers of nanoparticles for drug delivery.
Proceedings of The National Academy of Sciences of The United
States of America 2002, 99(19):12001-5.
- 92. D’Addio SM, Chan JGY, Kwok PCL, Benson BR, Prud’homme RK,
Chan H-K: Aerosol delivery of nanoparticles in uniform mannitol
carriers formulated by ultrasonic spray freeze drying. Pharmaceutical
Research 2013, 30(11):2891-901.
- 93. Cheow WS, Ng MLL, Kho K, Hadinoto K: Spray-freeze-drying
production of thermally sensitive polymeric nanoparticle aggregates
for inhaled drug delivery: Effect of freeze-drying adjuvants. International
Journal of Pharmaceutics 2011, 404(1–2):289-300.
- 94. Valero J, Egea MA, Espina M, Gamisans F, Garcia ML: Effect of
polymerization coadjuvants on nanocapsule elaboration and triamcinolone
entrapment. Drug Development and Industrial Pharmacy
1996, 22(2):167-73.
- 95. Zhang J, Wu L, Chan H-K, Watanabe W: Formation, characterization,
and fate of inhaled drug nanoparticles. Advanced Drug Delivery
Reviews 2011, 63(6):441-55.
- 96. Feng S-S, Mu L, Chen B-H, Pack D: Polymeric nanospheres
fabricated with natural emulsifiers for clinical administration of an
anticancer drug paclitaxel (Taxol®). Materials Science and Engineering:
C 2002, 20(1–2):85-92.
- 97. Muller RH, Mader K, Gohla S: Solid lipid nanoparticles (SLN) for
controlled drug delivery - a review of the state of the art. European
Journal of Pharmaceutics and Biopharmaceutics 2000, 50(1):161-
77.
- 98. Brewster ME, Loftsson T: Cyclodextrins as pharmaceutical solubilizers.
Advanced Drug Delivery Reviews 2007, 59(7):645-66.
- 99. Duchene D, Wouessidjewe D, Ponchel G: Cyclodextrins and carrier
systems. Journal of Controlled Release 1999, 62(1-2):263-8.
- 100. Pilcer G, Amighi K: Formulation strategy and use of excipients in
pulmonary drug delivery. International Journal of Pharmaceutics
2010, 392(1–2):1-19.
- 101. Burke PA. Controlled Release Protein Therapeutics: Effects of
Process and Formulation on Stability. In: Wise DL (eds), Handbook
of Pharmaceutical Controlled Release Technology. Marcel Dekker
Inc, New York, USA. 2000:661-692.
- 102. Jain RA: The manufacturing techniques of various drug loaded
biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials
2000, 21(23):2475-90.
- 103. Freitas S, Merkle HP, Gander B: Microencapsulation by solvent
extraction/evaporation: reviewing the state of the art of microsphere
preparation process technology. Journal of Controlled Release 2005,
102(2):313-32.
- 104. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM:
Nano/micro technologies for delivering macromolecular therapeutics
using poly(d,l-lactide-co-glycolide) and its derivatives. Journal of
Controlled Release 2008, 125(3):193-209.
- 105. Russo P, Sacchetti C, Pasquali I, Bettini R, Massimo G, Colombo P,
et al: Primary microparticles and agglomerates of morphine for nasal
insufflation. Journal of Pharmaceutical Sciences 2006, 95(12):2553-
61.
- 106. Li HY, Seville PC, Williamson IJ, Birchall JC: The use of amino
acids to enhance the aerosolisation of spray-dried powders for
pulmonary gene therapy. The Journal of Gene Medicine 2005,
7(3):343-53.
- 107. Li HY, Neill H, Innocent R, Seville P, Williamson I, Birchall JC:
Enhanced dispersibility and deposition of spray-dried powders for
pulmonary gene therapy. Journal of Drug Targeting 2003, 11(7):425-
32.
- 108. Ely L, Roa W, Finlay WH, Lobenberg R: Effervescent dry powder
for respiratory drug delivery. European Journal of Pharmaceutics
and Biopharmaceutics 2007, 65(3):346-53.
- 109. Chan HK, Clark A, Gonda I, Mumenthaler M, Hsu C: Spray dried
powders and powder blends of recombinant human deoxyribonuclease
(rhDNase) for aerosol delivery. Pharmaceutical Research 1997,
14(4):431-7.
- 110. Corrigan DO, Healy AM, Corrigan OI: The effect of spray drying
solutions of polyethylene glycol (PEG) and lactose/PEG on their
physicochemical properties. International Journal of Pharmaceutics
2002, 235(1-2):193-205.
- 111. Mosen K, Backstrom K, Thalberg K, Schaefer T, Axelsson A, Kristensen
HG: The apparent plasticizing effect of polyethylene glycol
(PEG) on the crystallinity of spray dried lactose/PEG composites.
European Journal of Pharmaceutics and Biopharmaceutics 2006,
64(2):206-11.
- 112. Louey MD, Van Oort M, Hickey AJ: Aerosol dispersion of respirable
particles in narrow size distributions using drug-alone and lacto se-blend
formulations. Pharmaceutical Research 2004, 21(7):1207-13.
- 113. Hadinoto K, Phanapavudhikul P, Kewu Z, Tan RB: Dry powder
aerosol delivery of large hollow nanoparticulate aggregates as prospective
carriers of nanoparticulate drugs: effects of phospholipids.
International Journal of Pharmaceutics 2007, 333(1-2):187-98.
- 114. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew
ML, et al: Large porous particles for pulmonary drug delivery.
Science 1997, 276(5320):1868-71.
- 115. Brannon-Peppas L, Vert M. Polylactic and Polyglycolic Acids as
Drug Delivery Carriers. In: Wise DL (eds), Handbook of Pharmaceutical
Controlled Release Technology. Marcel Dekker Inc, New
York, USA. 2000:99-110.
- 116. Takada S, Uda Y, Toguchi H, Ogawa Y: Application of a spray
drying technique in the production of TRH-containing injectable
sustained-release microparticles of biodegradable polymers. PDA
Journal of Pharmaceutical Science and Technology 1995, 49(4):180-
4.
- 117. Johnson OL, Jaworowicz W, Cleland JL, Bailey L, Charnis M,
Duenas E, et al: The stabilization and encapsulation of human
growth hormone into biodegradable microspheres. Pharmaceutical
Research 1997, 14(6):730-5.
- 118. Columbano A, Buckton G, Wikeley P: A study of the crystallisation
of amorphous salbutamol sulphate using water vapour sorption and
near infrared spectroscopy. International Journal of Pharmaceutics
2002, 237(1-2):171-8.
- 119. Grisedale LC, Jamieson MJ, Belton PS, Barker SA, Craig DQ: Characterization
and quantification of amorphous material in milled and
spray-dried salbutamol sulfate: a comparison of thermal, spectroscopic,
and water vapor sorption approaches. Journal of Pharmaceutical
Sciences 2011, 100(8):3114-29.
- 120. Gaisford S: Isothermal microcalorimetry for quantifying amorphous
content in processed pharmaceuticals. Advanced Drug Delivery
Reviews 2012, 64(5):431-9.
- 121. Tiddens HA, Geller DE, Challoner P, Speirs RJ, Kesser KC,
Overbeek SE, et al: Effect of dry powder inhaler resistance on the
inspiratory flow rates and volumes of cystic fibrosis patients of six
years and older. Journal of Aerosol Medicine 2006, 19(4):456-65.
- 122. Son Y, Mitchell JP, McConville JT. In Vitro Performance Testing for
Pulmonary Drug Delivery. In: Smyth H, Hickey A (eds), Controlled
Pulmonary Drug Delivery. Springer-Verlag, London, England. 2014:
384-415.