Bazı Doğal Fenolik Bileşiklerin Antioksidan Kapasiteleri ve Farklı Hücre Hatlarında Sitotoksik Etkileri

Bitkisel fenolik bileşikler insan beslenmesinin önemli bir bileşenidir ve son yıllarda bitkiler ve bitkisel fenolik bileşiklerin yararlı özelliklerine olan ilgi yoğunlaşmıştır. Bu bileşikler antioksidan, antiplatelet, antienflamatuvar ve antikanser etkiler gibi çok çeşitli biyolojik etkiler göstermektedirler. Kurkumin, resveratrol ve rosmarinik asit antioksidan etkileri bilinen fenolik bileşiklerdir ve genellikle kardiyovasküler ve nörodejeneratif hastalıklar gibi oksidatif stres ile ilişkili hastalıkların tedavisinde ve bu hastalıklardan korunmada kullanılmaktadırlar. Bu çalışmada, bu fenolik bileşiklerin antioksidan kapasiteleri troloks eşdeğer antioksidan kapasite yöntemi TEAC ile ve sitotoksisiteleri sağlıklı hücre hattı Çin hamster yumurtalık hücreleri CHO ve tümor hücre hatlarında İnsan meme kanseri hücreleri BT-474 ve insan epitelyal adenokarsinom hücreleri HeLa nötral kırmızı alım yöntemi ile belirlenmiştir. Bu çalışmanın sonucunda, resveratrol ve rosmarinik asitin trolokstan çok daha fazla antioksidan kapasiteye sahip olduğu, kurkuminin ise troloksa göre daha az antioksidan kapasiteye sahip olduğu gösterilmiştir. Sağlıklı CHO hücre hattında, kurkumin, resveratrol, rosmarinik asitin önemli sitotoksik etkileri olduğu görülmüştür. Ancak HeLa ve BT-474 gibi kanser hücrelerinde, bu bileşiklerin farklı özellik göstererek bu hücrelerde sitotoksik olmadıkları ve bu nedenle, bu kanser türlerinde kullanımlarının faydalı olamayacağı görülmüştür.

Antioxidant capacities and cytotoxic properties of some natural phenolic compounds in different cell lines

Plant phenolic compounds are important constituents of the human diet and in recent years attention has been drawn to beneficial properties of plants and its phenolic compounds. They exhibit a wide range of biological effects, including antioxidant, antiplatelet, anti-inflammatory and anticancer activities. Curcumin, resveratrol and rosmarinic acid are phenolic compounds which are known as antioxidants and commonly used for the preventation and treatment of oxidative stress related diseases such as cardiovascular and neurodegenerative disorders and cancer. In this study, we determined the antioxidant capacities of these phenolic compounds by the trolox equivalent antioxidant capacity TEAC assay and their cytotoxicity by neutral red uptake NRU assay in healthy cell line i.e., chinese hamster ovary CHO , and two tumor cell lines human breast carcinoma BT- 474 and human epithelial adenocarcinoma HeLa . Our results showed that resveratrol and rosmarinic acid have significantly more antioxidant capacity than trolox whereas curcumin showed less antioxidant capacity compared to trolox. In healty CHO cell line, curcumin, resveratrol and rosmarinic acid showed significantly cytotoxic activity, but in cancer cell lines such as HeLa and BT-474, all of the tested compounds have shown different profile. It seems to be not cytotoxic to HeLa and BT-474 cancer cell lines assuming that its usage in these cancer types are not beneficial.

___

  • Ramarathnam N., Osawa T., Ochi H., Kawakishi S.: The contribution of plant food antioxidants to human health, Trends in Food Science & Technology, 6(3), 75-82, (1995)
  • Rao YK., Geethangili M., Fang SH., Tzeng YM.: Antioxidant and cytotoxic activities of naturally occurring phenolic and related compounds: a comparative study. Food and Chemical Toxicology, 45(9), 1770-1776, (2007)
  • Balasundram N., Sundram K., Samman S.: Phenolic compounds in plants and agri- industrial by-products: Antioxidant activity, occurrence, and potential uses. Food chemistry, 99(1), 191-203, (2006)
  • Saint-Cricq GN., Provost C., Vivas N.: Comparative study of polyphenol scavenging activities assessed by different methods, Journal of Agricultural and Food Chemistry, 47(2), 425- 431, (1999)
  • Heim KE., Tagliaferro AR., Bobilya DJ.: Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships, The Journal of nutritional biochemistry, 13(10), 572-584, (2002)
  • Maurya DK., Devasagayam TPA.:Antioxidant and prooxidant nature of hydroxycinnamic acid de rivatives ferulic and caffeic acids. Food and Chemical Toxicology, 48(12), 3369- 3373, (2010)
  • Moure A., Cruz JM., Franco D., Dominguez JM., Sineiro J., Dominguez H.,Sineirob J., Domingueza H., Nunezb MJ., Parajoa JC. Natural antioxidants from residual sources. Food Chemistry, 72(2), 145-171, (2001)
  • Noguchi Y., Fukuda K., Matsushima A., Haishi D., Hiroto M., Kodera Y., Nishimura H., Inada Y.:Inhibition of Df-protease associated with allergic diseases by polyphenol, Jour nal of agricultural and food chemistry, 47(8), 2969-2972, (1999)
  • Carrol KK, Guthrie N, Kurowska EM. Use of citrus limonoids and flavonoids as well as tocotrienols for the treatment of cancer. EP Patent 1,049,464,(2000)
  • Ito A., Shamon L A., Yu B., Mata-Greenwood E., Lee SK., van Breemen RB., Mehta RG., Norman RF., Fong HS., Pezzuto JM., Kinghorn AD.: Antimutagenic constituents of Casimiroa edulis with potential cancer chemopreventive activity. Journal of agricultural and food chemistry, 46(9), 3509-3516, (1998)
  • Saito M., Hosoyama H., Ariga T., Kataoka S., Yam aji N.: Antiulcer activity of grape seed extract and procyanidins. Journal of Agricultural and Food Chemistry, 46(4), 1460-1 464, (1998)
  • Cemeli E., Baumgartner A., Anderson D.: Antioxidants and the Comet assay, Mutation Research/Reviews in Mutation Research, 681(1), 51-67, (2009)
  • van den Berg R., Haenen G R., van den Berg H., van der Vijgh W., Bast A.: The predictive value of the antioxidant capacity of structurally related flavonoids using the Trolo x equivalent antioxidant capacity (TEAC) assay, Food Chemistry, 70(3), 391-395, (2000)
  • Miller NJ., Rice-Evans C., Davies MJ., Gopinathan V., Milner A.:A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status i n premature neonates, Clinical science, 84, 407-407, (1993)
  • Arts MJ., Sebastiaan Dallinga J., Voss HP., Haenen GR., Bast A.: A new approach to assess the total antioxidant capacity using the TEAC assay, Food Chemistry, 88(4), 567-57 0, (2004)
  • Virgilio ALD., Iwami K., Wätjen W., Kahl R., Degen GH.: Genotoxicity of the isoflavones genistein, daidzein and equol in V79 cells, Toxicology letters, 151(1), 151-162, (2004)
  • Saquib Q., Al-Khedhairy AA., Siddiqui MA. , Abou-Tarboush FM., Azam A., Musarrat J.: Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells, Toxicology in vitro, 26(2), 351-361, (2012)
  • Chattopadhyay I., Biswas K., Bandyopadhyay U., Banerjee RK.: Turmeric and curcumin: Biological actions and medicinal applications, Current science, 87(1), 44-53, (2004)
  • Kunwar A., Barik A., Mishra B., Rathinasamy K., Pandey R., Priyadarsini K.: Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells, Bioch imica et Biophysica Acta (BBA)-General Subjects, 1780(4), 673-679, (2008).
  • Khopde MS., Priyadarsini KI., Venkatesan P., Rao M.:Free radical scavenging ability and anti oxidant efficiency of curcumin and its substituted analogue, Biophysical chemistry, 80(2):85-91, (1998).
  • Aggarwal BB., Kumar A., Bharti AC.: Anticancer potential of curcumin: preclinical and clinical studies, Anticancer Res., 23(1A), 363-398, (2003)
  • Sharma R, Gescher A, Steward W. Curcumin: the story so far, European Journal of Cancer, 41(13), 1955-1968, (2005)
  • Shishodia S., Sethi G., Aggarwal BB.: Curcumin: getting back to the roots, Annals of the New Y ork Academy of Sciences, 1056(1), 206-217, (2005)
  • Singh S., Khar A.:Biological effects of curcumin and its role in cancer chemopreventi on and therapy, Anti-Cancer Agents in Medicinal Chemistry, 6(3), 259-270, (2006)
  • Priyadarsini KI. Free radical rea ctions of curcumin in membrane models, Free Radical Biology and Medicine, 23(6), 838-843, (1997)
  • Subramanian M., Devasagayam T., Singh B.: Dimin ution of singlet oxygen-induced DNA damage by curcm in and related antioxidants, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 311(2), 249-255, (19 94)
  • Ak T, Gülçin İ. Antioxidant and radical scavenging properties of curcumin, Chemico- biological interactions, 174(1), 27-37, (20 08)
  • Lantto TA., Colucci M., Závadová V., Hiltunen R., Raasmaja A.: Cytotoxicity of curcumin, resveratrol and plant extracts from basil, juniper, laurel and parsley in SH-SY5Y and CV1-P cells, Food Chemistry, 117(3), 405-411, (2009)
  • Mehta K., Pantazis P., McQueen T., Aggarwal BB.: Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines, Anti-cancer drugs, 8(5), 470-481, (1997)
  • Hashim FJ., Shawkat MS., Al-Jewari H.: Cytotoxicity of Curcumin against Leukemic Cell Lines via Apoptosis Activity, Current Research Journal of Biological Sciences, 4(1), 60-64, (2012)
  • Sanders TH., McMichael RW., Hendrix KW.: Occurrence of resveratrol in edible peanuts, Journal of agricultural and food chemistry, 48(4), 1243-1246, (2000)
  • Kraft TE., Parisotto D., Schempp C., Efferth T.: Fighting cancer with red wine? Molecular mechanisms of resveratrol, Critical reviews in food science and nutrition, 49(9), 782-799, (2009)
  • Garcia-Zepeda SP., Garcia-Villa E., Diaz-Chavez J., Hernandez-Pando R., Gariglio P.: Resveratrol ind uces cell death in cervical cancer cells through apoptosis and autophagy, European journal of cancer prevention: the official journal of the European Cancer Prevention Organisation, 22(6), 5 77-584, (2013)
  • Gülçin İ. Antioxidant properties of resveratrol: A structure–activity insight, Innovative Food Science & Emerging Technologies, 11(1), 210-21 8, (2010)
  • Xiang L., Xiao L., Wang Y., Li H., Huang Z., He X.: Health benefits of wine: don’t expect resveratrol too much, Food Chem., 156, 258-263, (2014)
  • Zhao XY., Yang S., Chen YR., Li PC., Dou MM., Zhang J.: Resveratrol and arsenic trioxide act synergistically to kill tumor cells in vitro and in vivo,PloS one, 9(6), e98925, (2014)
  • Petersen M, Simmonds MS. Rosmarinic acid, Phytochemistry, 62(2), 121-125, (2003)
  • Fujimoto A., Masuda T.: Antioxidation mechanism of rosmarinic acid , identification of an unstable quinone derivative by the addition of odourless thiol, Food Chemistry, 132(2), 901-906, (2012)
  • Ho CT., Wang M., Wei GJ., Huang TC., Huang MT.:Chemistry and antioxidative factors in rosemary and sage, Biofactors, 13(1 4), 161-166, (2000)
  • Liu GT., Zhang TM., Wang B., Wang YW.: Protective action of seven natural phenolic compounds against peroxidative damage to biomembranes, Biochemical Pharmacology, 43, 147-152, (1992)
  • Murakami K., Haneda M., Qiao S., Naruse M., Yoshino M.: Prooxidant action of rosmarinic acid: transition metal-dependent generation of reactive oxygen species, Toxicology in vitro, 21(4), 613-617, (2007)
  • Makino T., Ono T., Muso E., Yoshida H., Honda G., S asayama S.: Inhibitory effects of rosmarinic acid on the proliferation of cultured murine mesangial cells, Nephrology Dialysis Transplantation, 15(8), 1140-1145, (2000)
  • Moon DO., Kim MO., Lee JD., Choi YH., GY K.: Rosmarinic acid cell death through suppression of TNF- induced NF-B activation and ROS generation in human leukemia U937 cells, Cancer Lett., 288, 183-191, (2010)