A criterion for nonzero multiplier for Orlicz spaces of an affine group $\mathbb{R}_{+}\times \mathbb{R}$

A criterion for nonzero multiplier for Orlicz spaces of an affine group $\mathbb{R}_{+}\times \mathbb{R}$

Let $\mathbb{A}=\mathbb{R}_{+}\times \mathbb{R}$ be an affine group with right Haar measure $d\mu$ and $\Phi_i$, $i=1,2$, be Young functions. We show that there exists an isometric isomorphism between the multiplier of the pair $(L^{\Phi_1}(\mathbb{A}),L^{\Phi_2}(\mathbb{A}))$ and $(L^{\Psi_2}(\mathbb{A}),L^{\Psi_1}(\mathbb{A}))$ where $\Psi_i$ are complementary pairs of $\Phi_i$, $i=1,2$, respectively. Moreover we show that under some conditions there is no nonzero multiplier for the pair $(L^{\Phi_1}(\mathbb{A}),L^{\Phi_2}(\mathbb{A}))$, i.e., for an affine group $\mathbb{A}$ only the spaces $M(L^{\Phi_1}(\mathbb{A}),L^{\Phi_2}(\mathbb{A}))$, with a concrete condition, are of any interest.

___

  • [1] I. Akbarbaglu and S. Maghsoudi, Banach-Orlicz algebras on a locally compact group, Mediterr. J. Math. 10, 1937-1974, 2013.
  • [2] G. Bennet and R. Sharpley, Interpolation of Operators, Academic Press London, 1988.
  • [3] Z.W. Birnbaum and W. Orlicz, Über die Verallgemeinerung des Begriffes der zueinander konjugerten Potenzen, Studia Math. 3, 1-67, 1931.
  • [4] O. Blasco and A. Osançlıol, Notes on bilinear multipliers on Orlicz spaces, Math. Nachr. 292 (12), 2522-2536, 2019.
  • [5] B. Brainerd and R. E. Edwards, Linear operators which commute with translations I. Representation theorems, J. Aust. Math. Soc. 6, 289-327, 1966.
  • [6] A. Cianchi, L. Pick and L. Slavíkova, Sobolev embeddings in Orlicz and Lorentz spaces with measures, J. Math. Anal. Appl. 485, Paper no. 123827, 2020.
  • [7] P. Harjulehto and P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture notes in mathematics, 2236, Springer, 2019.
  • [8] E. Kaniuth and K.F. Taylor, Induced representations of locally compact groups, Cambridge University Press, 197, 2013.
  • [9] M.A. Krasnosel’skii and Ja.B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Graningen, 1961.
  • [10] R. Larsen, An Introduction to the Theory of Multipliers, Die Grundlehren der mathematischen Wissenschaften, 175, Springer-Verlag, Berlin, Heidelberg and New York, 1971.
  • [11] A.T. Lau, Closed convex invariant subsets of Lp(G), Trans. Am. Math. Soc. 232, 131-142, 1977.
  • [12] W.A.J. Luxemburg, Banach function spaces, PhD Dissertation, 1955.
  • [13] W.A. Majewski and L.E. Labuschagne, On applications of Orlicz spaces to statistical physics, Ann. Henri Poincaré 15, 1197-1221, 2014.
  • [14] W. Orlicz, Über eine gewisse klasse von Räumen vom Typus B, Bulletin International de l’Academie Polonaise des Sciences et des Lettres Série A, 8, 207-220, 1932.
  • [15] A. Osançlıol and S. Öztop, Weighted Orlicz algebras on locally compact groups, J. Aust. Math. Soc. 99, 399-414, 2015.
  • [16] S. Öztop and E. Samei, Twisted Orlicz algebras I, Studia Math. 236, 271-296, 2017.
  • [17] S. Öztop and E. Samei, Twisted Orlicz algebras II, Math. Nachr. 292, 1122-1136, 2019.
  • [18] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
  • [19] R. Üster and S. Öztop, Invariant subsets and homological properties of Orlicz modules over group algebras, Taiwan. J. Math. 24, 959-973, 2020.
  • [20] R. Üster, Multipliers for the weighted Orlicz spaces of a locally compact abelian group, Results in Math. 76 (4), Paper No. 183, 2021.
  • [21] J. Wendel, Left centralizers and isomorphisms of group algebras Pac. J. Math. 2, 251-261, 1952.
Hacettepe Journal of Mathematics and Statistics-Cover
  • Yayın Aralığı: 6
  • Başlangıç: 2002
  • Yayıncı: Hacettepe Üniversitesi Fen Fakultesi
Sayıdaki Diğer Makaleler

Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras

Fattoum HARRATHİ, Sami MABROUK, Othmen NCİB, Sergei SILVESTROV

On the weak convergence and the uniform-in-bandwidth consistency of the general conditional $U$-processes based on the copula representation: multivariate setting

Salim BOUZEBDA

On the $n$th-Order subfractional Brownian motion

El Omari MOHAMED, Mabdaoui MOHAMED

Adaptive Nadaraya-Watson kernel regression estimators utilizing some non-traditional and robust measures: a numerical application of British food data

Usman SHAHZAD, Ishfaq AHMAD, Ibrahim M ALMANJAHİE, Nadia H. AL – NOOR, Muhammad HANİF

Singular perturbations arising in complex Newton's method

Figen ÇİLİNGİR

On a minimal set of generators for the algebra $H^*(BE_6; \mathbb F_2)$ as a module over the Steenrod algebra and applications

Nguyen Khac TİN

A study on the tangent bundle with the vertical generalized Berger type deformed Sasaki metric

Saadia CHAOUİ, Abderrahım ZAGANE, Aydın GEZER, Nour Elhouda DJAA

Lower and upper stochastic bounds for the joint stationary distribution of a non-preemptive priority retrial queueing system

Houria HABLAL, Nassim TOUCHE, Lalamaghnia ALEM, Amina Angelika BOUCHENTOUF, Mohamed BOUALEM

Weakly $ (k,n) $-absorbing (primary) hyperideals of a Krasner $ (m,n) $-hyperring

Bijan DAVVAZ, Gülşen ULUCAK, Ünsal TEKİR

On quantile-based dynamic survival extropy and its applications

Amir Hamzeh KHAMMAR, Seyyed Mahdi AMİR JAHANSHAHİ, Hassan ZAREİ