Termofilik Anoxybacillus sp. Kullanarak Katı Faz Fermantasyonu (SSF) ile Isılkararlı α-Amilaz Üretimi

Ekstrasellüler α-amilaz (1,4-α-D-glukan glukanohidrolaz, EC 3.2.1.1) üretimi yeni izole edilmiş bir termofilik bakteri olan Anoxybacillus sp. kullanılarak katı faz fermantasyon (SSF) yöntemiyle gerçekleştirilmiştir. Bakteri ırkı, Türkiye’de Afyonkarahisar, Ömer, termal kaplıcasından izole edilmiştir. α-Amilaz üretimi için, muz kabuğu, buğday kepeği, pirinç kabuğu, elma kabuğu, portakal kabuğu, mısır yağı pastası, mercimek kepeği ve antep fıstığı kabuğu gibi tarımsal atıklar katı substrat olarak kullanılmıştır. En yüksek α-amilaz aktivitesi, pirinç kabuğu üzerindeki mikroorganizma üremesinde elde edilmiştir. Maksimum enzim aktivitesi, 3.628 U/mg, 48 saatlik fermantasyon süresi, 60°C’lik bir inkübasyon sıcaklığı, pH 6.0, substrat parçacık boyutu 1.500 μm, başlangıç nem seviyesi %60 ve aşılama seviyesi %40 (v/w) optimum koşulları altında elde edilmiştir.

Production of Thermostable α-Amylase Through Solid State Fermentation (SSF) by Using Thermophilic Anoxybacillus sp.

The production of extracellular α-amylase (1,4-α-D-glucan glucanohydrolase, EC 3.2.1.1) by a newly isolated thermophilic bacterium Anoxybacillus sp. was studied in solid state fermentation (SSF). Bacterial strain was isolated from a thermal spring of Ömer, Afyonkarahisar in Turkey. Agricultural wastes such as banana husk, wheat bran, rice husk, apple bark, orange bark, maize oil cake, lentil bran and pistachio shell were used for α-amylase production as solid substrates. Growth on rice husk gave the highest α-amylase activity. The maximum enzyme activity obtained was 3.628 U/mg of under optimum conditions of an fermentation time of 48 h, an incubation temperature of 60°C, a pH of 6.0, a substrat particle size 1.500 µm, an initial moisture level of 60% and an inoculum level of 40% (v/w).

___

  • A.A. Saboury, Stability, activity and binding properties study of α-amylase upon interaction with Ca2+ and Co2+, Biologia, 57 (2002) 221–228.
  • W.F. Li, X.X. Zhou, P. Lu, Structural features of thermozymes, Biotechnol. Adv., 23 (2008) 271–281.
  • M. Michelin, T. M. Silva, V. M. Benassi, S. C. PeixotoNogueira, L. A. Moraes, J. M. Leão, J. A. Jorge, H. F. Terenzi, M. L. Polizeli, Purification and characterization of a thermostable a-amylase produced by the fungus Paecilomyces variotii, Carbohydrate Res. 345 (2010) 2348–2353.
  • S. Özdemir, F. Matpan, V. Okumus, A. Dündar, M.S. Ulutas, M. Kumru, Isolation of a thermophilic Anoxybacillus flavithermus sp. nov. and production of thermostable α-amylase under solid-state fermentation (SSF), Ann. Microbiol., 62 (2012) 1367– 1375.
  • B.L. Luiand, Y.M. Tzeng, Water content and water activity for the production of cyclodepsipeptide in solid state fermentation, Biotechnol. Lett., 21 (1999) 657–661.
  • A. Pandey, C.R. Soccol, J.A. Rodriguez Leon, P. Nigam, Factors that influence on solid state fermentation. In: Pandey A, ed. Solid State Fermentation in Biotechnology: Fundamentals and Applications. New Delhi: Asiatech Publishers Inc., (2001) pp. 21–9.
  • R.V. Feniksova, A.S. Tikhomirova, E.E. Rakhleeva, Conditions for forming amylase and proteinase in surface cultures of Bacillus subtilis, Microbiologia., 29 (1960) 745–748.
  • M. Elibol, A.R. Moreira, Optimization some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solidstate substrate fermentation, Process. Biochem., 40 (2005) 1951-1956.
  • P. Turner, G. Mamoand E.N. Karlsson, Potential and utilization of thermophiles and thermostable enzymes in biorefining, Microbial. Cell Factories., 6:9 (2007) 1–23.
  • K.S. Harmeet, S. Kanupriya, K.G. Jugal, K.S. Sanjeev, Production of a thermostable α-amylase from Bacillus sp. PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production, Process Biochem., 40 (2005) 525–534.
  • P. Bernfeld, Amylases, α and β. In: Methods in Enzymology I. Academic, New York (1955).
  • T. Aanniz, M. Ouadghiri, M. Melloul, J. Swings, E. Elfahime, J. Ibijbijen, M. Ismaili, M. Amar, Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils, Braz. J. Microbiol., 46 (2015) 443–453.
  • K. Tamura, J. Dudley, M. Nei, S. Kumar, MEGA4: molecular evolutionary genetics analysis (MEGA), Mol. Biol. Evol., 24 (2007) 1596–1599.
  • N. Mahanta, A. Gupta, SK. Khare, Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate, Bioresour. Technol., 99 (2008) 1729–1735.
  • A. Kunamneni, K. Permaul, S. Singh, Amylase production in solid-state fermentation by the thermophilic fungus Thermomyces lanuginosus, J. Biosci. Bioeng., 100 (2005) 168–171.
  • K.R. Babu, T. Satyanarayana, α-Amylase production by thermophilic Bacillus coagulans in solid state fermentation, Process, Biochem., 30 (1995) 305–309.
  • S.M. Kotwal, M.M. Gote, S.R. Sainkar, M.I. Khan, J.M. Khire, Production of α-galactosidase by thermophilic fungus Humicola sp. in solid state fermentation and its application in soya milk hydrolysis, Process Biochem., 33 (1998) 337–43.
  • D.H. Bergey, Thermophilic bacteria, J. Bacteriol., 4 (1919) 301–306.
  • C.R. Soccol, L.P.S. Vandenberghe, Overview of solid state fermentation in Brazil, Biochem. Eng. J., 13 (2003) 205–218.
  • R.Kuhad, D. Deswal, S. Sharma, A. Bhattacharya, K. Jain, A. Kaur, Revisiting cellulase production and redefining current strategies based on major challenges, Renew. Sust. Energ. Rev., 55 (2016) 249–272.
  • D. Pessoa, A. Finkler, A. Machado, L. Luz, D. Mitchell, Fluid dynamics simulation of a pilot-scale solid-state fermentation bioreactor, Chem. Eng. Trans., 49 (2016) 49–54.
  • C.R. Soccol, E.S. Ferreira da Costa, L.A.J. Letti, S.G. Karp, A.L. Woiciechowski, L.P.S. Vandenberghe, Recent developments and innovations in solid state fermentation, Biotechnology Research&Innovation., 1 (2017) 52-71.
  • A. Pandey, Solid-state fermentation, Biochem. Eng. J.,13 (2003) 81–84.
  • M. Asgher, M.J. Asad, S.U. Rahman, R.L. Legge, A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing, J. Food. Eng.,79 (2007) 950–955.
  • B. Arikan, Highly thermostable, thermophilic, alkaline, SDS and chelato rresistant amylase from a thermophilic Bacillus sp. Isolate A3-15, Bioresour. Technol., 99 (2008) 3071–3076.
  • A. Pandey, C.R. Soccol, P. Nigam, V.T. Soccol, Biotechnological potential of agro-industrial residues: I. Sugarcane bagasse, Bioresour. Technol., 74 (2000) 69–80.
  • R.K. Saxena, K. Dutt, L. Agarwal, P. Nayyar, A highly thermostable and alkaline amylase from a Bacillus sp. PN5, Bioresour. Technol., 98 (2007) 260–265.
  • R. Gupta, P. Gigras, H. Mohapatra, V.K. Goswami, B. Chauhan, Microbial a-amylases: A biotechnological perspective, Process Biochem., 38 (2003) 1599–1616.