Sulardaki Kristal Moru Boyasının Tabakalı MnO ve MnO@Mn- FeO Nanokompozit Katalizörleri ile Parçalanması

B u çalışmada, bazik bir trifenilmetan boyası olan “kristal moru”nun CV sulu çözeltilerde H2O2 varlığında uzaklaştırılması ve bozunması, tabakalı MnO2 ve ayrıca MnO2@MnFe2O4 nanokompozit katalizörler kullanılarak araştırıldı. CV’nin bozunmasının tabakalı MnO2 yapısı ile daha hızlı gerçekleştiği görüldü. Katalitik bozunma ürünleri Elektrospray İyonlaşmalı-Dört Kutuplu-Uçuş Zamanlı Kütle Spektrometresi ESI-Q-ToF-MS kullanılarak izlendi ve analiz edildi. Ana parçalanma ürünleri olarak, biyo-iyileştirme ile mineralizasyon ürünlerine dönüşebilme potansiyeli olan 4-izosiyanobenzaldehit A ve Michler ketonu B tanımlandı. Böylece, MnO2/H2O2 sisteminin CV’yi biyobozunabilir yapılara dönüştürebilen özendirici bir katalizör olduğu anlaşıldı

Degradation of Crystal Violet Dye from Waters by Layered MnO2 and Nanocomposite-MnO2@MnFe2O4 Catalysts

In this study, the removal and degradation of a basic triphenylmethane dye “crystal violet” CV was investi- gated by using layered MnO2 and MnO2 @MnFe2O4 nanocomposite catalysts in aqueous solutions in the presence of H2O2. The reaction was faster with the layered MnO2. The catalytic degradation of CV was traced by analyzing the degradation products using Electrospray Ionization-Quadrupole-Time-of-Flight-Mass Spectrometry ESI-Q-ToF-MS . 4-isocyanobenzaldehyde A and Michler’s ketone B were identified as main intermediates both of which can potentially be bioremediated to mineralization products. MnO2/H2O2 thus appeared to be an encouraging catalyst system in converting CV to biodegradable fragments.

___

  • 1. S. Dawood, T.K. Sen, Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents, J. Chem. Process Eng., 1 (2013) 1.
  • 2. S.G. Patel, N.R. Yadav, S.K. Patel, Evaluation of degradation characteristics of reactive dyes by UV/ Fenton, UV/Fenton/activated charcoal, and UV/ Fenton/TiO2 processes: A comparative study, Separ. Sci. Technol., 48 (2013) 1788-1800.
  • 3. D. Vujevi , S. Papi , N. Koprivanac, A.L. Boži , Decolorization and mineralization of reactive dye by UV/Fenton process, Separ. Sci. Technol., 45 (2010) 1637-1643.
  • 4. S. Atalay, G. Ersöz, Novel Catalysts in Advanced Oxidation of Organic Pollutants, SpringerBriefs in molecular science, Green Chemistry for Sustainability, Springer (2016).
  • 5. K. Singh, S. Arora, Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies, Crit. Rev. Env. Sci. Technol., 41 (2011) 807-878.
  • 6. Z.-R. Tian, W. Tong, J.-Y. Wang, N.-G. Duan, V.V. Krishnan, S.L. Suib, Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts, Science, 276 (1997) 926-930.
  • 7. S.R. Segal, S.L. Suib, L. Foland, Decomposition of pinacyanol chloride dye using several manganese oxide catalysts, Chem. Mater., 9 (1997) 2526-2532.
  • 8. T. Sriskandakumar, N. Opembe, C.-H. Chen, A. Morey, C. King’ondu, S.L. Suib, Green decomposition of organic dyes using octahedral molecular sieve manganese oxide catalysts, J. Phys. Chem. A, 113 (2009) 1523- 1530.
  • 9. N. Mittal, A. Shah, P.B. Punjabi, V. Sharma, Photodegradation of rose bengal using MnO2 (Manganese dioxide), Rasayan J. Chem, (2009) 516- 520.
  • 10. R. Kannan, A. Jegan, A. Ramasubbu, K. Karunakaran, S. Vasanthkumar, Synthesis and catalytic studies of layered and oms type nano manganese oxide material, J. Nanomater. Biostructure, 6 (2011) 755-760.
  • 11. J. Ge, J. Qu, Degradation of azo dye acid red B on manganese dioxide in the absence and presence of ultrasonic irradiation, J. Hazard. Mater., 100 (2003) 197-207.
  • 12. M.A. Al-Ghouti, Y.S. Al-Degs, M.A. Khraisheh, M.N. Ahmad, S.J. Allen, Mechanisms and chemistry of dye adsorption on manganese oxides-modified diatomite, J. Environ. Manage., 90 (2009) 3520-3527.
  • 13. X. Li, S. Song, X. Wang, D. Liu, H. Zhang, Selfassembled 3D flower-like hierarchical Fe 3 O 4/K x MnO 2 core–shell architectures and their application for removal of dye pollutants, CrystEngComm, 14 (2012) 2866-2870.
  • 14. S. Mani, R.N. Bharagava, Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety, Rev. Environ. Contam. Toxicol., 237, (2016), 71-104.
  • 15. P. Rao, G. Patel, S. Sharma, S.C. Ameta, Photocatalytic degradation of crystal violet over semiconductor zinc oxide powder suspended in aqueous solution, Toxicol. Environ. Chem., 60 (1997) 155-161.
  • 16. R. Ameta, J. Vardia, P.B. Punjabi, S.C. Ameta, Use of semiconducting iron (III) oxide in photocatalytic bleaching of some dyes, Indian J. Chem. Technol., 13,(2006) 114-118.
  • 17. R. Ameta, D. Sharma, M. Ordia, Photocatalytic Degradation of Crystal Violet using Nickel Containing Polytungstometalate, Sci. Rev Chem. Commun., 3, (2013), 133-140.
  • 18. P. Su, D. Chu, L. Wang, Studies on catalytic activity of nanostructure Mn2O3 prepared by solvent-thermal method on degrading crystal violet, Modern Appl. Sci., 4 (2010) 125.
  • 19. I. Arslan-Alaton, B.H. Gursoy, J.E. Schmidt, Advanced oxidation of acid and reactive dyes: Effect of Fenton treatment on aerobic, anoxic and anaerobic processes, Dyes Pigm., 78 (2008) 117-130.
  • 20. H.J. Fan, S.T. Huang, W.H. Chung, J.L. Jan, W.Y. Lin, C.C. Chen, Degradation pathways of crystal violet by Fenton and Fenton-like systems: condition optimization and intermediate separation and identification, J. Hazard. Mater., 171 (2009) 1032-1044.
  • 21. G.Elmaci, C.E. Frey, P. Kurz, B. Zümreoğlu-Karan, Water Oxidation Catalysis by Birnessite@ Iron Oxide Core–Shell Nanocomposites, Inorg. Chem., 54 (2015) 2734-2741.
  • 22. G. Elmacı, C.E. Frey, P. Kurz, B. Zümreoğlu-Karan, Water oxidation catalysis by using nano-manganese ferrite supported 1D-(tunnelled), 2D-(layered) and 3D-(spinel) manganese oxides, J. Mater. Chem. A, 4 (2016) 8812-8821.
  • 23. R.J. Watts, J. Sarasa, F.J. Loge, A.L. Teel, Oxidative and reductive pathways in manganese-catalyzed Fenton’s reactions, J. Environ. Eng., 131 (2005) 158- 164.
  • 24. S.H. Do, B. Batchelor, H.K. Lee, S.H. Kong, Hydrogen peroxide decomposition on manganese oxide (pyrolusite): kinetics, intermediates, and mechanism, Chemosphere, 75 (2009) 8-12.
  • 25. D.Y. Chen, X.F. Guo, H. Wang, H.S. Zhang, The natural degradation of benzophenone at low concentration in aquatic environments, Water Sci. Technol., 72 (2015) 503-509.
  • 26. M. Goda, Y. Hashimoto, S. Shimizu, M. Kobayashi, Discovery of a novel enzyme, isonitrile hydratase, involved in nitrogen-carbon triple bond cleavage, J. Biol. Chem., 276 (2001) 23480-23485.
  • 27. H. Fukatsu, Y. Hashimoto, M. Goda, H. Higashibata, M. Kobayashi, Amine-synthesizing enzyme N-substituted formamide deformylase: screening, purification, characterization, and gene cloning, Proc. Natl. Acad. Sci. USA, 101 (2004) 13726-13731.
  • 28. M. McBride, Oxidation of 1, 2-and 1, 4-dihydroxybenzene by birnessite in acidic aqueous suspension, Clays Clay Miner, 37 (1989) 479-486.
  • 29. F. Schurz, J.M. Bauchert, T. Merker, T. Schleid, H. Hasse, R. Gläser, Octahedral molecular sieves of the type K-OMS-2 with different particle sizes and morphologies: Impact on the catalytic properties in the aerobic partial oxidation of benzyl alcohol, Appl. Catal. A, 355 (2009) 42-49.
  • 30. R. Sivashankar, A. Sathya, K. Vasantharaj, V. Sivasubramanian, Magnetic composite an environmental super adsorbent for dye sequestration–A review, Environ. Nanotechnol. Monit. Manage., 1 (2014) 36-49.
Hacettepe Journal of Biology and Chemistry-Cover
  • ISSN: 2687-475X
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1972
  • Yayıncı: Hacettepe Üniversitesi, Fen Fakültesi