Isı ile İndüklenen Gıda Kirleticisi Akroleine Subkronik Maruziyet: Sütten kesilme ile Postpubertal Dönemdeki Erkek Sıçanlar Üzerindeki Toksikolojik Etkilerin Değerlendirilmesi

Ç ok elektrofilik bir α, β aldehit olan akrolein besinlerde amino asitlerin, yağların ve karbohidratların ısıl işlem görmesi ile oluşmaktadır. Bu çalışmada, akrolein maruziyetinin sütten kesilmeden postpubertal döneme kadar olan süreçteki erkek sıçanların üreme sistemi üzerindeki toksikolojik etkilerini değerlendirmeyi amaçlamaktadır. Bu amaçla, sütten kesilen erkek sıçanlar 90 gün boyunca 0.5, 1 ve 2 mg/kg/gün akroleine ağız yoluyla yolla maruz bırakılmışlardır. Serum testosteron ve lütenleştirici hormon LH düzeyleri ölçülmüş, sperm parametreleri değerlendirilmiştir. Üreme sistemine ait organlar histopatolojik olarak incelenmiştir. Akroleine maruz kalan sıçanların üreme sistemi dokularında çeşitli histopatolojik değişiklikler gözlenmesine rağmen, hormon düzeylerinde ve sperm sayılarında herhangi bir değişiklik gözlenmemiştir

Subchronic Exposure of Heat-induced Food Contaminant Acrolein: Evaluation of Toxicological Effects on Male Reproductive Tract from Weaning to Postpuberty

Acrolein is a very electrophilic α, β aldehyde, formed in foods by thermal processing of amino acids, fats and carbohydrates. Due to lack of toxicological information about acrolein exposure, male rats from weaning to postpubertal period was evaluated in terms of reproductive toxicity. Weaning male rats were orally exposed to 0.5, 1 and 2 mg/kg/day acrolein for 90 days. Serum testosterone and lutenizing hormone LH levels were measured and sperm paremeters were evaluated. Reproductive organs were examined histopathologically. Although several histopathological alterations were observed in reproductive organs of rats in acrolein treatment groups, no changes were observed in hormone levels and sperm count.

___

  • 1. J.P. Kehrer, S.S. Biswal, The molecular effects of acrolein, Toxicol. Sci., 57 (2000) 6-15.
  • 2. JF. Stevens, C.S. Maier, Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease, Mol. Nutr. Food Res., 52 (2008) 7-25.
  • 3. EPA. Reregistration Eligibilty Decision Document by Acrolein, 2008.
  • 4. M. Rashedinia, P. Lari, K. Abnous, H. Hosseinzadeh, Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity, Toxicol. Appl. Pharm., 272 (2013) 199-207.
  • 5. O. Faroon, N. Roney, J. Taylor, A. Ashizawa, M.H. Lumpkin, D.J. Plewak, Acrolein health effects, Toxicol. Ind. Health, 24 (2008) 447-490.
  • 6. K. Abraham, S. Andres, R. Palavinskas, K. Berg, K.E. Appel, A. Lampen, Toxicology and risk assessment of acrolein in food, Mol. Nutr. Food Res., 55 (2011) 1277- 1290.
  • 7. R. Gomes, M. Meek, E. Eggleton, Concise International Chemical Assessment Document 43: Acrolein, Geneva: World Health Organization, 2002.
  • 8. S.S. Auerbach, J. Mahler, G.S. Travlos, R.D. Irwin, A comparative 90-day toxicity study of allyl acetate, allyl alcohol and acrolein, Toxicology, 253 (2008) 79- 88.
  • 9. P.I. Beamer, R.A. Canales, A. Bradman, J.O. Leckie, Farmworker children’s residential non-dietary exposure estimates from micro-level activity time series, Environ. Int., 35 (2009) 1202-1209.
  • 10. G. Selmanoğlu, Evaluation of the reproductive toxicity of patulin in growing male rats, Food Chem. Toxicol., 44 (2006) 2019-2024.
  • 11. A. Amin, Ketoconazole-induced testicular damage in rats reduced by Gentiana extract, Exp. Toxicol. Pathol., 59 (2008) 377-384.
  • 12. N. Skakkebaek, E. Rajpert-De Meyts, K. Main, Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects, Hum. Reprod., 16 (2001) 972-978.
  • 13. G. Aldini, M. Orioli, M. Carini, Protein modification by acrolein: relevance to pathological conditions and inhibition by aldehyde sequestering agents, Mol. Nutr. Food Res., 55 (2011) 1301-1319.
  • 14. R.A. Parent, H.E. Caravello, M.S. Christian, A.M. Hoberman, Developmental toxicity of acrolein in New Zealand white rabbits, Fund. Appl. Toxicol., 20 (1993) 248-256.
  • 15. R.A. Parent, H.E. Caravello, A.M. Hoberman, Reproductive study of acrolein on two generations of rats, Fund. Appl. Toxicol., 19 (1992) 228-237.
  • 16. J.W. Crissman, D.G. Goodman, P.K. Hildebrandt, R.R. Maronpot, D.A. Prater, J.H. Riley, et al., Society of Toxicologic Pathology Guideline, Toxicol. Pathol., 32 (2004) 126-131.
  • 17. A. Yavasoglu, M.A. Karaaslan, Y. Uyanikgil, F. Sayim, U. Ates, N. Yavasoglu, Toxic effects of anatoxin-a on testes and sperm counts of male mice, Exp. Toxicol. Pathol., 60 (2008) 391-396.
  • 18. E. Tanvir, R. Afroz, M. Chowdhury, S. Gan, N. Karim, M. Islam, et al., A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of rats, Hum. Exp. Toxicol., 35 (2016) 991-1004.
  • 19. W.W. Ku, R.E. Chapin, R.N. Wine, B.C. Gladen, Testicular toxicity of boric acid (BA): relationship of dose to lesion development and recovery in the F344 rat, Reprod. Toxicol., 7 (1993) 305-319.
  • 20. EPA. Guidelines for Reproductive Toxicity Risk Assessment. 1996. https://www.epa.gov/sites/ production/files/2014-11/documents/guidelines_ repro_toxicity.pdf
  • 21. D.M. Creasy, R.E. Chapin. Chapter 59 - Male Reproductive System. In: Haschek WM, Rousseaux CG, Wallig MA, editors. Haschek and Rousseaux’s Handbook of Toxicologic Pathology (Third Edition). Boston: Academic Press; (2013). p. 2493-2598.
  • 22. S.G. Kumar, K. Narayana, K. Bairy, U.J. D’Souza, V.P. Samuel, K. Gopalakrishna, Dacarbazine induces genotoxic and cytotoxic germ cell damage with concomitant decrease in testosterone and increase in lactate dehydrogenase concentration in the testis, Mutat. Res-Gen. Toxicol. En., 607 (2006) 240-252.
  • 23. K. Narayana, N. Prashanthi, A. Nayanatara, L.K. Bairy, U.J. DoSouza, An organophosphate insecticide methyl parathion (o-o-dimethyl o-4-nitrophenyl phosphorothioate) induces cytotoxic damage and tubular atrophy in the testis despite elevated testosterone level in the rat, J. Toxicol. Sci., 31 (2006) 177-189.
  • 24. S.S. Oda, Z.K. El-Maddawy, Protective effect of vitamin E and selenium combination on deltamethrininduced reproductive toxicity in male rats, Exp. Toxicol. Pathol., 64 (2012) 813-819.
  • 25. N.H. Cho, C. Park, Effects of dimethyl methylphosphonate (DMMP) and trimethylphosphate (TMP) on spermatogenesis of rat testis, Yonsei Med. J., 35 (1994) 198-208.
  • 26. E. Karacaoğlu, G. Selmanoğlu, Effects of heat-induced food contaminant furan on reproductive system of male rats from weaning through postpuberty, Food Chem. Toxicol., 48 (2010) 1293-1301.
  • 27. G.L. Foley, Overview of male reproductive pathology, Toxicol. Pathol., 29 (2001) 49-63.
  • 28. A.M. De Marzo, Y. Nakai, W.G. Nelson, editors. Inflammation, atrophy, and prostate carcinogenesis. Urologic Oncology: Seminars and Original Investigations; Elsevier, 2007.
  • 29. A.A. Quintar, F.D. Roth, A.L. De Paul, A. Aoki, C.A. Maldonado, Toll-like receptor 4 in rat prostate: modulation by testosterone and acute bacterial infection in epithelial and stromal cells, Biol. Reprod., 75 (2006) 664-672.
  • 30. H. Zenick, E. Clegg, S. Perreault, G. Klinefelter, L, Gray, Assessment of male reproductive toxicity: a risk assessment approach. In: W. H, editor. Principles and Methods of Toxicology: Raven Press, New York; (1994) 937-988.
  • 31. N. Marouani, O. Tebourbi, S. Mahjoub, M.T. Yacoubi, M. Sakly, M. Benkhalifa, et al., Effects of hexavalent chromium on reproductive functions of male adult rats, Reprod. Biol., 12 (2012) 119-133.
  • 32. M. Yoshida, T. Kitani, A. Takenaka, K. Kudoh, S. Katsuda, K. Taya, et al., Lack of effects of oxolinic acid on spermatogenesis in young adult and aged Wistar rats, Food Chem. Toxicol., 40 (2002) 1815-1825.
  • 33. F.R. Boockfor, C.A. Blake, Chronic administration of 4-tert-octylphenol to adult male rats causes shrinkage of the testes and male accessory sex organs, disrupts spermatogenesis, and increases the incidence of sperm deformities, Biol. Reprod., 57 (1997) 267-277.