Topraktaki Gelecek Vaadeden Acinetobacter Suşunun Glukonik Asit Üretiminde Kullanımı

G lukonik asit asitliği kontrol etmek veya kalsiyum, demir gibi metalleri bağlamak için gıdalarda kullanılan bir katkı maddesidir. Topraktan yeni izole edilen Acinetobacter sp. WR326, yüksek fosfat çözme aktivitesine sahiptir ve glukoz dehidrojenaz GDH aktivitesi için pyrroloquinoline quinone PQQ kofaktörüne gereksinim duymamaktadır. Bu çalışmada bu bakterinin glukonik asit üretme potansiyeli araştırılmıştır. İlk önce, Acinetobacter sp. WR326 farklı glukoz derişimlerde 100, 250, 500 mM 30ºC sıcaklıkta 5 gün boyunca 120 saat trikalsiyum fosfat TCP besiyerinde inkübe edilmiştir. En yüksek glukonik asit verimi %59 100 mM’lık glukoz derişimi içeren kültürde bulunmuştur. Sonra besiyerine glukonik asit ilavesi üç farklı derişimde 50, 100, 200 mM araştırılmıştır. Acinetobacter sp. WR326 suşu 100 mM glukoz ve 100 mM glukonik asit ilavesinde kültüre alındığında verim %95.27 oranına yükselmiştir. Hiçbir koşulda glukonik asidin işlenmesi ve saflaştırılmasında problemlere neden olan 2-keto D-glukonik asit tespit edilmemiştir. Sonuç olarak, Acinetobacter sp. WR326 suşunun glukonik asit üretiminde yeni potansiyel bakteri suşu olarak kullanılabileceği düşünülmektedir

Promising Strain of Acinetobacter from Soil for Utilization of Gluconic Acid Production

Gluconic acid, a food additive, is used in many foods to control acidity or binds metals such as calcium, iron. Acinetobacter sp. WR326, newly isolated from soil possesses high phosphate solubilizing activity and do not require pyrroloquinoline quinone PQQ for glucose dehydrogenase GDH activity as cofactor In this study the gluconic acid production potential of this bacterium was investigated. Firstly, Acinetobacter sp. WR326 was incubated in tricalcium phosphate medium TCP with varying glucose concentrations 100, 250, 500 mM , at a temperature of 30°C for 5 days 120 hours . The highest gluconic acid yield 59% was found at a glucose concentration of 100 mM. Then three different levels of gluconic acid addition to the medium 50, 100, 200 mM were tested. When Acinetobacter sp. WR326 strain was cultivated with a 100 mM glucose and 100 mM gluconic acid the yield increased to 95.27%. In any trials 2 -keto D-gluconic acid, causes problems in processing and purification of the gluconic acid, was not detected in the medium. As a conclusion, Acinetobacter sp. WR326 may be considered novel potential bacterial strain for gluconic acid production.

___

  • 1. O.V. Singh, K.R. Jain, R.P. Singh, Gluconic acid production under varying fermentation conditions by Aspergillus niger, J. Chem. Technol. Biotechnol., 78 (2003) 208–212.
  • 2. S. Anastassiadis, H.J. Rehm, Continuous gluconic acid production by Aureobasidium pullulans with and without biomass retention, Electron. J. Biotechnol., (2006) 915 10 2006.
  • 3. H.A. El-Enshasy, Production of gluconic acid by free and immobilized cells of recombinant Aspergillus niger in batch culture, Egypt. J. Biotechnol., 13 (2003) 187-201.
  • 4. O.V. Singh, B.M.J. Pereira, R.P. Singh, Isolation and characterization of a potent fungal strain Aspergillus niger ORS-4 for gluconic acid production, J. Sci. Ind. Res., 58 (1999) 594-600.
  • 5. S.A. Ahmed, S.S. Farag, A.I. Hassan, W.H. Botros, Production of gluconic acid by using some irradiated microorganisms, J. Radiat. Res. Appl. Sci., 8 (2015) 374-380.
  • 6. C. Dowdells, R.L. Jones, M. Mattey, M. Bencina, M. Legisa, D.M. Mousdale, Gluconic acid production by Aspergillus terreus, Lett. Appl. Microbiol., 51 (2010) 252–257.
  • 7. S. Ramachandran, P. Fontanille, A. Pandey, C. Larroche, Gluconic Acid, Properties, Applications and Microbial Production, Food Technol. Biotechnol., 44 (2006) 185–195.
  • 8. A. Sharma, V. Vivekanand, P.R. Singh, Solid-state fermentation for gluconic acid production from sugarcane molasses by Aspergillus niger ARNU4 employing tea waste as the novel solid support, Bioresour. Technol., 99 (2008) 3444–3450.
  • 9. O.V. Singh, R.P. Singh, Bioconversion of grape must into modulated gluconic acid production by Aspergillus niger ORS-4.410, J. Appl. Microbiol., 100 (2006) 1114-1122.
  • 10. S. Anastassiadis, A. Aivasidis, C. Wandrey, Continuous gluconic acid production by isolated yeast-like mould strains of Aureobasidium pullulans, Appl. Microbiol. Biotechnol., 61 (2003) 110-117
  • 11. M. Stella, M.S. Halimi, Gluconic acid production by bacteria to liberate phosphorus from insoluble phosphate complexes, J. Trop. Agric. Food Sci., 43 (2015) 41–53.
  • 12. M. Öğüt, F. Er, N. Kandemir, Phosphate solubilization potentials of soil Acinetobacter strains, Biol. Fertil. Soils, 46 (2010) 707–715.
  • 13. T.F. Lin, H.I. Huang, F.T. Shen, C.C. Young, The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74, Bioresour. Technol., 97 (2006) 957–960.
  • 14. P. Tallapragada, U. Seshachala, Phosphatesolubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka, India, Turk. J. Biol., 36 (2012) 25-35.
  • 15. M. Öğüt, F. Er, G. Neumann, Increased proton extrusion of wheat roots by inoculation with phosphorus solubilizing microorganism, Plant Soil, 339 (2011) 285–297.
  • 16. R.W.J. Hommes, P.W. Postma, O.M. Neijssel, D.W. Tempest, P. Dokter, J.A. Duine evidence of a quinoprotein glucose dehydrogenase apoenzyme in several strains of Escherichia coli, FEMS Microbiol. Lett., 24 (1984) 329-333.
  • 17. M.A. Van Kleef, J.A. Duine, Factors relevant in bacterial pyrroloquinoline quinine production, Appl. Environ. Microbiol., 55 (1989) 1209-1213.
  • 18. O. Düzgüneş, T. Kesici, O. Kavuncu, F. Gürbüz, Araştırma ve Deneme Metodları (İstatistiksel Metodları-II), Ankara Üniv. Zir. Fak. Yay., (1987) 1021, Ankara.