Soya Unundan Lektin Saflaştırılması için PHEMA Bazlı Kriyojel

B u çalışmada poli hidroksietilmetakrilat PHEMA temelli kriyojel kolon hazırlanmış ve soya unundan lektin saflaştırılmasında kullanılabilirliği araştırılmıştır. PHEMA kriyojel taramalı elektron mikroskobu SEM ve şişme testi ile karakterize edilmiştir. PHEMA kriyojele ligand olarak N-asetil-D-galaktozamin siyanojen bromür CNBr aktivasyonu ile bağlanmıştır. Soya tohumlarından elde edilen soya unu özütü lektin kaynağı olarak kullanılmıştır. Soya unundan en fazla lektin bağlama miktarı 261 mg/g’dır. N-asetil-D-galaktozamin immobilize edilmiş PHEMA kriyojelden lektin elusyonu 0.5 M galaktoz ile gerçekleştirilmiştir. Soya unundan elde edilen lektinin saflığı SDS-PAGE ile araştırılmıştır. Son olarak, bağlanma ve elusyon döngüsü 5 kez tekrarlanmış ve kolon kapasitesinde önemli bir azalma gözlenmemiştir

PHEMA Based Cryogel For Lectin Purification From Soybean Flour

In this study poly hydroxyethyl methacrylate PHEMA based cryogel column was prepared and its usability for lectin purification from soybean flour was investigated. PHEMA cryogel was characterized by swelling test and scanning electron microscope SEM . N-acetyl-D-galactosamine GalNAc was immobilized to PHEMA cryogel as a ligand by cyanogen bromide activation. Soybean flour extract obtained from soybean seeds was used as source of lectin. Maximum lectin binding from soybean flour was 261 mg/g. Lectin elution from the N-acetyl-D-galactosamine immobilized PHEMA GalNAc-PHEMA cryogel was achieved by 0.5 M galactose. Purity of the lectin obtained from soybean flour was investigated by SDS-PAGE. Finally binding-elution cycle was performed for 5 times and no significant decrease was observed at column capacity.

___

  • 1. H. Lis, N. Sharon, Lectins as molecules and tools, Ann. Rev. Biochem, 55 (1986) 35.
  • 2. N. Sharon, H. Lis, History of lectins: from hemagglutinins to biological recognition molecules, Glycobiology, 14 (2004) 53.
  • 3. R.S. Singh, A.K. Tiwary, J.F. Kennedy, Lectins: sources, activities and applications, Critical Reviews in Biotechnology, 19 (1999) 145.
  • 4. P.R. Satish, A. Surolia, Exploiting lectin affinity chromatography in clinical diagnosis, J Biochem. Bioph. Meth., 49 (2001) 625.
  • 5. B.A. Sela, H. Lis, N. Sharon, L. Sachs, Different locations of carbohydrate containing sites in the surface membrane of normal and transformed mammalian cells, J. Membr. Biol. 3 (1970) 267.
  • 6. C. Babac, H. Yavuz, I.Y. Galaev, E. Piskin, A. Denizli. Binding of antibodies to concanavalin A-modified monolithic cryogel. React. Funct. Polym. 66 (2006) 1263.
  • 7. M.E. Etzler, 1986, Distribution and function of plant lectins. In The Lectins, Properties, Functions, and Applications in Biology and Medicine; Liener, I. E., Sharon, N., Goldstein, I. J., Eds.; Academic Press: New York; pp 371-435.
  • 8. D.K. Mandal, E. Nieves. L. Bhattacharyya, G.A. Orr, J. Roboz, Q.T. Yu, C.F. Brewer, , Purification and characterization of three isolectins of soybean agglutinin. Evidence for C- terminal truncation by electrospray ionization mass spectrometry, European Journal of Biochemistry, 221 (1994) 547.
  • 9. S. Bajpai, A. Sharma, M. Nath Gupta, Removal and recovery of antinutritionalfactors from soybeanflour, Food Chem. 89 (2005) 497.
  • 10. I. Perçin, H. Yavuz, E. Aksöz, A. Denizli, N-Acetyl-Dgalactosamine specific lectin isolation from soyflour with poly(HPMA-GMA) beads, J. Appl. Polym. Sci., 111 (2009) 148.
  • 11. Y.O. Fasina, H.F. Swaisgood, J.D. Garlich, H.L. Classen, A semi-pilot scale procedure for isolating and purifying soybean (Glycine max) lectin, J. Agric. Food Chem., 51 (2003) 4532.
  • 12. L. Franco-Fraguas, P. Alicia, F. Ferreira, H. Massaldi, N. Suarez, F. Batista-Viera, Preparative purification of soybean agglutinin by affinity chromatography and its immobilization for polysaccharide isolation, Journal of Chromatography B, 790 (2003) 365.
  • 13. P. Arvidsson, F.M. Plieva, V.I. Lozinsky, I.Y. Galaev, B. Mattiasson. Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent, J. Chromatogr. A, 986 (2003) 275.
  • 14. N. Bereli, M. Andac, G. Baydemir, R. Say, I.Y. Galaev, A. Denizli. Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels. J. Chromatogr. A., 1190 (2008) 18.
  • 15. H. Alkan, N. Bereli, Z. Baysal, A. Denizli, Antibody purification with protein A attached supermacroporous poly(hydroxyethyl methacrylate) cryogel, Biochem. Eng. J. 45 (2009) 201.
  • 16. K. Tasun, P. Ghose, K. Ghen. Sugar determination of DNS method. Biotechnol. Bioeng., 12 (1970) 921.
  • 17. U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227 (1970) 680.
  • 18. A. Barre, Y. Bourne, E.J.M. Van Damme, W.J. Peumans, P. Rouge. Mannose-binding plant lectins: Different structural scaffolds for a common sugar-recognition process. Biochimie, 83 (2001) 645.
Hacettepe Journal of Biology and Chemistry-Cover
  • ISSN: 2687-475X
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1972
  • Yayıncı: Hacettepe Üniversitesi, Fen Fakültesi