Poliüretanlar: Çok Yönlü Malzemelerin Tasarımı, Sentezi ve Yapı-Performans İlişkileri

Poliüretanlar hem ticari, hem de akademik araştırmalar açısından oldukça önemli ve ilginç polimerik malzemelerdir. Bunun en temel nedeni poliüretan sentezi için gerekli çok değişik özelliklere sahip çok fazla sayıda hammaddenin bulunmasıdır. Bu sayede çeşitli uygulamalar için çok farklı yapılar ve özellikler gösteren poliüretanlar tasarlamak ve üretmek mümkündür. Bu makalede poliüretanların tasarımı ve sentezi sırasında dikkat edilmesi gereken ve polimer özelliklerine etki eden önemli fiziksel ve kimyasal değişkenler tartışılmaktadır. Ayrıca hidrojen bağlarının poliüretanların yapı-morfoloji-özellik ilişkileri üzerindeki kritik etkileri hem deneysel, hem de hesaplamalı çalışmalar ile irdelenmektedir. Poliüretan yapısında bulunan yumuşak ve sert kısımların kimyasal yapılarının, çözünürlük parametrelerinin ve ortalama molekül ağırlıklarının morfoloji ve performans üzerine etkileri de ayrıntılı olarak tartışılmaktadır. Bunlara ilaveten polimerizasyon reaksiyonları sırasında dikkat edilmesi gereken kritik konuların elde edilen poliüretanların yapısı ve özellikleri üzerine etkileri de belirtilmektedir. Polimer Biliminin 100cü yılını kutlamak amacı ile hazırlanmış olan bu makalenin hem genç, hem de deneyimli araştırmacılara poliüretanların yapısal tasarımları ve sentezleri sırasında göz önünde bulundurulması gereken önemli parametreler ve elde edilen polimerlerin yapı-performans ilişkileri ve uygulamaları konularında yardımcı olacağını umuyoruz.

Polyurethanes: Design, Synthesis and Structure-Property Behavior of Versatile Materials

Polyurethanes are one of the most important classes of polymeric materials. This is mainly due to the availability ofa very large number of inherently different starting materials that allows the design and synthesis of polyurethanebased materials with a wide range of properties for numerous applications. In this short review, important physical andchemical factors and parameters that have a significant effect on the properties of polyurethanes are discussed. Criticalcontribution of hydrogen bonding on the structure-morphology-property behavior of these materials was emphasized byboth experimental data and molecular simulation studies. Influence of the chemical structures, solubility parameters andmolecular weights of the soft and hard segments on morphology and properties were discussed. Important issues regardingthe reaction chemistry, synthetic method used and thermal history on structure and performance of polyurethanes wereexplained. We hope this article, which is prepared to celebrate the 100th anniversary of Polymer Science, will be useful tothose who are newcomers to the field, but also to the experienced researchers to better understand the structure-propertybehavior of polyurethanes and tailor-design novel structures for various applications.

___

  • 1. I. Yilgör, E. Yilgör, G.L. Wilkes, Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review Polymer, 58 (2015) A1-A36.
  • 2. C.S. Schollenberger, H. Scott, G.H. Moore, Polyurethane VC, a virtually cross-linked elastomer, Rubber World, 137 (1958) 549-555.
  • 3. J.H. Saunders, K.C. Frisch, Polyurethanes: Chemistry and technology, 1962, New York: Interscience Publishers.
  • 4. C. Hepburn, Polyurethane elastomers, Second edition ed. 1992, London, UK: Elsevier Science Publishers.
  • 5. N.M.K. Lambla, K.A. Woodhouse, S.L. Cooper, Polyurethanes in biomedical applications, 1998, Boca Raton, FL, USA: CRC Press.
  • 6. P. Krol, Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers, Prog. Mater. Sci., 52 (2007) 915-1015.
  • 7. E. Delebecq, et al., On the versatility of urethane/urea bonds: Reversibility, blocked isocyanate, and non-isocyanate polyurethane, Chem. Rev., 113 (2013) 80-118.
  • 8. R. Herrington, K. Hock, Flexible polyurethane foams, 1991, USA: Dow Plastics.
  • 9. I. Yilgör, J.E. McGrath, Effect of catalysts on the reaction between a cycloaliphatic diisocyanate (h-mdi) and normalbutanol, J. Appl. Polym. Sci., 30 (1985)1733-1739.
  • 10. M. Sato, The rate of reaction of isocyanates with alcohols, II. Journal of Organic Chemistry, 1962. 27(3): p. 819-825.
  • 11. E. Yilgör, I. Yilgor, E. Yurtsever, Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds, Polymer, 43 (2002) 6551-6559.
  • 12. S. Sami, et al., Understanding the influence of hydrogen bonding and diisocyanate symmetry on the morphology and properties of segmented polyurethanes and polyureas: Computational and experimental study, Polymer, 55 (2014) 4563-4576.
  • 13. O. Bayer, Verfahren zur Herstellung von Polyurethanen bzw. Polyharnstoffen. 1938: Germany.
  • 14. O. Bayer, Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane). Angew. Chem. Int. Ed., 59 (1947) 257-272.
  • 15. M.E. Hermes, Enough for One Lifetime: Wallace Carothers, Inventor of Nylon. . 1996, Washington DC, USA: ACS.
  • 16. D.H. Keifer, The Establishment of Modern Polymer Science By Wallace H. Carothers 2000, USA: ACS.
  • 17. T. Hentschel, H. Munstedt, Kinetics of the molar mass decrease in a polyurethane melt: a rheological study, Polymer, 42 (2001) 3195-3203.
  • 18. G. Woods, The ICI polyurethanes Book. 1990, USA: John Wiley and Sons.
  • 19. I. Yilgör, et al., Siloxane-urea segmented co-polymers, 1. Synthesis and characterization of model polymers from mdi and alpha,omega-bis(aminopropyl)polydimethylsiloxane, Polym. Bull., 8 (1982) 535-542.
  • 20. E. Yilgör, et al., Isopropyl alcohol: An unusual, powerful, ‘green’ solvent for the preparation of silicone–urea copolymers with high urea contents, Polymer, 44 (2003) 7787-7793.
  • 21. E. Yilgör, I. Yilgor, Hydrogen bonding: A critical parameter in designing silicone copolymers, Polymer, 42 (2001) 7953- 7959.
  • 22. G. Benrendt, B.W. Naber, The chemical recycling of polyurethanes, Journal of the University of Chemical Technology and Metallurgy, 44 (2009) 3-23.
  • 23. Recycling of polyurethane foams. 2018, USA: William Andrew Applied Science Publishers, Elsevier.
  • 24. Polyurethane market. 2020; Available from: https://www. marketsandmarkets.com/Market-Reports/polyurethanemarket-151784541.html
  • 25. Global Polyurethane Market (2019 to 2023). 2020; Available from: https://www.businesswire.com/news/ home/20200320005325/en/Global-Polyurethane-Market2019-2023---Identify.
  • 26. Polyurethane Market Analysis Report By Product (Rigid Foam, Flexible Foam, Coatings), By Application (Furniture & Interiors, Construction, Automotive), And Segment Forecasts, 2019 - 2025. 2020; Available from: https://www. grandviewresearch.com/industry-analysis/polyurethanepu-market.
  • 27. P.J. Flory, Principles of Polymer Chemistry. 1953, Ithaca, USA: Cornell University Press.
  • 28. J.M. Castro, C.W. Macosco, Studies of mold filling and curing in the reaction injection-molding process, AIChE J., 28 (1982) 250-260.
  • 29. R.E. Camargo, et al., Phase-separation studies in rim polyurethanes catalyst and hard segment crystallinity effects, Polymer, 26 (1985) 1145-1154.
  • 30. K. Dusek, M. Spirkova, I. Havlicek, Network formation of polyurethanes due to side reactions, Macromolecules, 23 (1990) 1774-1781.
  • 31. K. Dusek, M. Spirkova, M. Ilavsky, Network formation in polyurethanes due to allophanate and biuret formation - gel fraction and equilibrium modulus, Makromol. Chem., Macromol. Symp., 45 (1991) 87-95.
  • 32. P.J. Flory, Thermodynamics of high polymer solutions, J. Chem. Phys., 10 (1942) 51-61.
  • 33. M.L. Huggins, Thermodynamic properties of solutions of long-chain compounds, Ann. N. Y. Acad. Sci., 43 (1942) 1-32.
  • 34. L.M. Robeson, Polymer Blends: A Comprehensive Review. 2007, Munich, Germany: Carl Hanser Verlag. 687.
  • 35. L. Leibler, Theory of microphase separation in block copolymers, Macromolecules, 13 (1980) 1602-1617.
  • 36. D.W.V. Krevelen, Properties of Polymers. 1990, Amsterdam, Netherlands: Elsevier Science Publishers.
  • 37. F. E. Bailey, J. and J.V. Koleske, Poly(ethylene oxide). 1976, New York, USA: Academic Press.
  • 38. S.P. Ertem, et al., Effect of soft segment molecular weight on tensile properties of poly(propylene oxide) based polyurethaneureas, Polymer, 53 (2012) 4614-4622.
  • 39. P. Dreyfuss, Poly(tetrahydrofuran). 1982, New York, USA: Gordon and Breach Science Publishers.
  • 40. M.A. Woodruff, D.W. Hutmacher, The return of a forgotten polymer-Polycaprolactone in the 21st century, Prog. Polym. Sci., 35 (2010) 1217-1256.
  • 41. E. Yilgör, I. Yilgör, Silicone containing copolymers: Synthesis, properties and applications, Prog. Polym. Sci., 39 (2014) 1165-1195.
  • 42. D. Tyagi, et al., Siloxane-urea segmented co-polymers, 2. Investigation of mechanical-behavior, Polym. Bull., 8 (1982) 543-550.
  • 43. I. Yilgör, et al., Segmented organosiloxane copolymers, 1. Synthesis of siloxane urea copolymers, Polymer, 25 (1984) 1800-1806.
  • 44. I. Yilgör, J.E. McGrath, Polysiloxane containing copolymers - a survey of recent developments, Adv. Polym. Sci., 86 (1988) 1-86.
  • 45. E. Yilgör, et al., Comparison of hydrogen bonding in polydimethylsiloxane and polyether based urethane and urea copolymers, Polymer, 41 (2000) 849-857.
  • 46. A. Campanella, L.M. Bonnaillie, R.P. Wool, Polyurethane foams from soyoil-based polyols, J. Appl. Polym. Sci., 112 (2009) 2567-2578.
  • 47. X.D. Zhang, et al., Role of silicone surfactant in flexible polyurethane foam, J. Colloid Interface Sci., 215 (1999) 270- 279.
  • 48. D.K. Chattopadhyay, K.V.S.N. Raju, Structural engineering of polyurethane coatings for high performance applications, Prog. Polym. Sci., 32 (2007) 352-418.
  • 49. I. Yilgör, E. Yilgör, Hydrophilic polyurethaneurea membranes: influence of soft block composition on the water vapor permeation rates, Polymer, 40 (1999) 5575-5581.
  • 50. D.B. Klinedinst, et al., Structure - property behavior of new segmented polyurethanes and polyureas without use of chain extenders, Rubber Chem. Technol., 78 (2005) 737-753.
  • 51. J.P. Sheth, et al., Role of chain symmetry and hydrogen bonding in segmented copolymers with monodisperse hard segments, Polymer, 46 (2005) 7317-7322.
  • 52. S. Das, et al., Effect of symmetry and H-bond strength of hard segments on the structure-property relationships of segmented, nonchain extended polyurethanes and polyureas, J. Macromol. Sci. Part B Phys., 46 (2007) 853-875.
  • 53. E. Yildirim, et al., Temperature-dependent changes in the hydrogen bonded hard segment network and microphase morphology in a model polyurethane: Experimental and simulation studies, J. Polym. Sci., Part B: Polym. Phys., 56 (2018) 182-192.
  • 54. I. Yilgör, E. Yilgör, Structure-morphology-property behavior of segmented thermoplastic polyurethanes and polyureas prepared without chain extenders, Polym. Rev., 47 (2007) 487-510.
  • 55. E. Yildirim, et al., Multiscale modeling of the morphology and properties of segmented silicone-urea copolymers. J. Inorg. Organomet. Polym. Mater., 22 (2012) 604-616.
  • 56. S.K. Jewrajka, et al., Polyisobutylene-based polyurethanes, ii. Polyureas containing mixed pib/ptmo soft segments, J. Polym. Sci., Part A: Polym. Chem., 47 (2009) 2787-2797.
  • 57. J. Kang, et al., PIB-based polyurethanes, IV. The morphology of polyurethanes containing soft co-segments, J. Polym. Sci., Part A: Polym. Chem., 47 (2009) 6180-6190.
  • 58. R. Hernandez, et al., A comparison of phase organization of model segmented polyurethanes with different intersegment compatibilities. Macromolecules, 41 (2008) 9767-9776.
  • 59. J.P. Sheth, et al., Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective, Polymer, 45 (2004) 6919-6932.
  • 60. I. Yilgör, et al., Contribution of soft segment entanglement on the tensile properties of silicone-urea copolymers with low hard segment contents, Polymer, 50 (2009) 4432-4437.
  • 61. I. Yilgör, et al., Influence of soft segment molecular weight on the mechanical hysteresis and set behavior of siliconeurea copolymers with low hard segment contents, Polymer, 52 (2011) 266-274.
  • 62. A. Aneja, G.L. Wilkes, A systematic series of ‘model’ PTMO based segmented polyurethanes reinvestigated using atomic force microscopy, Polymer, 44 (2003) 7221-7228.
  • 63. R.M. Versteegen, R.P. Sijbesma, E.W. Meijer, Synthesis and characterization of segmented copoly(ether urea)s with uniform hard segments, Macromolecules, 38 (2005) 3176- 3184.
  • 64. R.M. Versteegen, et al., Properties and morphology of segmented copoly(ether urea)s with uniform hard segments, Macromolecules, 39 (2006) 772-783.
  • 65. D. De, R.J. Gaymans, Thermoplastic polyurethanes with TDIbased monodisperse hard segments. Macromol. Mater. Eng., 294 (2009) 405-413.
  • 66. C. Prisacariu, E. Scortanu, Influence of the type of chain extender and urethane group content on the mechanical properties of polyurethane elastomers with flexible hard segments, High Perform. Polym., 23 (2011) 308-313.
  • 67. I. Yilgör, et al., FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes, Polymer, 47 (2006) 4105- 4114.
  • 68. J.P. Sheth, et al., Time-dependent morphology development in a segmented polyurethane with monodisperse hard segments based on 1,4-phenylene diisocyanate, Macromolecules, 38 (2005) 10074-10079.
  • 69. I. Yilgör, et al., Time-dependent morphology development in segmented polyetherurea copolymers based on aromatic diisocyanates, J. Polym. Sci., Part B: Polym. Phys., 47 (2009) 471-483.