Biomimetik Sistemler için Moleküler Bakılama Teknolojisi

Biyomimetik terimi, kısaca doğanın incelenmesi olarak tanımlanabilir. Bilim adamları biyomedikal ve terapötik uygulamalarda, daha iyi ilaçlar, yapay organlar, algılama aletleri vb. yapmak için doğal modelleri, sistemleri ve unsurları taklit ederek, insan sorunlarını çözmek ve günlük yaşamı kolaylaştırmak için doğanın muazzam çeşitliliğinden ilham aldılar. Bu tür uygulamalarda, stabilite ve tekrar kullanılabilirlikteki eksikliklere rağmen, özgüllüğü sağlamak için proteinler, antikorlar, enzimler, DNA, lektinler, aptamerler, hücreler ve virüsler gibi biyolojik tanıma öğeleri yoğun olarak kullanılmıştır. Bununla birlikte, son yirmi yılda moleküler baskılanmış polimerler (MIP’ler), çapraz bağlayıcının varlığında kalıp yapı etrafında fonksiyonel monomerlerin koordine edilmesi yoluyla geniş bir örnek yelpazesi oluşturmuş ve doğal biyolojik etkileşimleri taklit etmeye bir alternatif olarak sentezlenmiştir. Bu derleme, ayırma tekniklerinde, doku mühendisliği uygulamalarında, biyomimetik yüzeylerde, sensörlerde, yapay membranlar ve ilaç taşınım sistemlerinde moleküler baskılama teknikleriyle hazırlanan biyomimetiklerin genel hatlarını ve pratik uygulamalarını özetleyecektir.

Molecular Imprinting Technology for Biomimetic Assemblies

The term biomimetic can be simply defined as the examination of nature. The scientist inspired from the enormous diversityof nature to solve human problems or facilitate the daily life by mimicking natural models, systems and elements especiallyin biomedical and therapeutic applications to make better drugs, artificial organs, sensing instruments etc. Biologicalrecognition elements like proteins, antibodies, enzymes, DNA, lectins, aptamers, cells and viruses have been heavily usedto ensure specificity in such applications in spite of their lack of stability and reusability. However, in the last two decadesmolecularly imprinted polymers, MIPs, have been synthesized as an alternative to mimic natural biological interactions fora broad spectrum of templates by means of coordinating functional monomers around template in the presence of crosslinker. This review will outline the broad contours of biomimetics prepared by molecular imprinting techniques and theirpractical applications in the separation techniques, tissue engineering applications, biomimetic surfaces, sensors, artificialmembranes and drug delivery systems.

___

  • 1. B. Chen, S. Piletsky, A.P.F. Turner, Molecular Recognition: Design of “Keys,” Comb, Chem. High Throughput Screen., 5 (2002) 409–427.
  • 2. H. Yavuz, K. Çetin, S. Akgönüllü, D. Battal, A. Denizli, Therapeutic protein and drug imprinted nanostructures as controlled delivery tools, in: Alexandru Mihai Grumezescu (Ed.), Des. Dev. New Nanocarriers, William Andrew Publishing, (2018) 439–473.
  • 3. M. Cieplak, W. Kutner, Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition?, Trends Biotechnol., 34 (2016) 922–941.
  • 4. F.H. Dickey, Specific Adsorption, J. Phys. Chem., 59 (1955) 695–707.
  • 5. G. Wulff, R. Grobe-Einsler, W. Vesper, A. Sarhan, Enzymeanalogue built polymers, 5. On the specificity distribution of chiral cavities prepared in synthetic polymers, Die Makromol. Chemie., 178 (1977) 2817–2825.
  • 6. R. Arshady, K. Mosbach, Synthesis of substrate‐selective polymers by host‐guest polymerization, Die Macromol. Chemie., 182 (1981) 687–692.
  • 7. W. Shi, S.Q. Zhang, K.B. Li, W.P. Jia, D.M. Han, Integration of mixed-mode chromatography and molecular imprinting technology for double recognition and selective separation of proteins, Sep. Purif. Technol., 202 (2018) 165–173.
  • 8. A.M. Shrivastav, S.P. Usha, B.D. Gupta, Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting, Biosens. Bioelectron., 79 (2016) 150– 157.
  • 9. Y. Saylan, S. Akgönüllü, H. Yavuz, S. Ünal, A. Denizli,Molecularly imprinted polymer based sensors for medical applications. Sensors, 19, (2019) 1279.
  • 10. K. Çetin, H. Alkan, N. Bereli, A. Denizli, Molecularly imprinted cryogel as a pH-responsive delivery system for doxorubicin, J. Macromol. Sci. Part A Pure Appl. Chem., 54 (2017) 502– 508.
  • 11. L. Cenci, R. Tatti, R. Tognato, E. Ambrosi, C. Piotto, A.M. Bossi, Synthesis and characterization of peptide-imprinted nanogels of controllable size and affinity, Eur. Polym. J., 109 (2018) 453–459.
  • 12. Z. He, S. Zang, Y. Liu, Y. He, H. Lei, A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nano flower as signal enhancer, Biosens. Bioelectron., 73 (2015) 85–92.
  • 13. J.B. Carbajo, A.L. Petre, R. Rosal, S. Herrera, P. Letón, E. García-Calvo, A.R. Fernández-Alb, J.A. PerdigónMelóna, Continuous ozonation treatment of ofloxacin: Transformation products, water matrix effect and aquatic toxicity, J. Hazard. Mater., 292 (2015) 34–43.
  • 14. P. Qu, J. Lei, L. Zhang, R. Ouyang, H. Ju, Molecularly imprinted magnetic nanoparticles as tunable stationary phase located in microfluidic channel for enantioseparation, J. Chromatogr. A., 1217 (2010) 6115–6121.
  • 15. H. Peng, M. Luo, H. Xiong, N. Yu, F. Ning, J. Fan, Z. Zeng, J. Li, L. Chen, Preparation of photonic-magnetic responsive molecularly imprinted microspheres and their application to fast and selective extraction of 17β-estradiol, J. Chromatogr. A., 1442 (2016) 1–11.
  • 16. R. Gutierrez-Climente, A. Gomez-Caballero, A. Guerreiro, D. Garcia-Mutio, N. Unceta, M.A. Goicolea, R.J. Barrio, Molecularly imprinted nanoparticles grafted to porous silica as chiral selectors in liquid chromatography, J. Chromatogr. A., 1508 (2017) 53–64.
  • 17. E. Bayram, E. Yılmaz, L. Uzun, R. Say, A. Denizli,. Multiclonal plastic antibodies for selective aflatoxin extraction from food samples, Food Chem., 221 (2017) 829–837.
  • 18. Y. Tang, J. Gao, X. Liu, X. Gao, T. Ma, X. Lu, J. Li, Ultrasensitive detection of clenbuterol by a covalent imprinted polymer as a biomimetic antibody, Food Chem., 228 (2017) 62–69.
  • 19. Y. Wu, J. Lu, X. Lin, J. Gao, L. Chen, J. Cui, P. Lv, X. Liu, M. Meng, Y. Yan, Bioinspired Synthesis of Janus NanocompositeIncorporated Molecularly Imprinted Membranes for Selective Adsorption and Separation Applications, ACS Sustain. Chem. Eng., 6 (2018) 9104–9112.
  • 20. Q.Y. Ang, S.C. Low,. Morphology and kinetic modeling of molecularly imprinted organosilanol polymer matrix for specific uptake of creatinine, Anal. Bioanal. Chem. 407 (2015) 6747–6758.
  • 21. N. Bereli, G. Ertürk, M.A. Tümer, R. Say, A. Denizli, Oriented immobilized anti-hIgG via Fc fragment-imprinted PHEMA cryogel for IgG purification, Biomed. Chromatogr., 27 (2013) 599–607.
  • 22. G. Ertürk, N. Bereli, M.A. Tümer, R. Say, A. Denizli, Molecularly imprinted cryogels for human interferon-alpha purification from human gingival fibroblast culture, J. Mol. Recognit., 26 (2013) 633–642.
  • 23. W.L. Murphy, D.H. Kohn, D.J. Mooney, Growth of continuous bonelike mineral within porous poly (lactide-co-glycolide) scaffolds in vitro, J Biomed Mater Res., 8 (2000) 50-58.
  • 24. A.R. Armiento, M.J. Stoddart, M. Alini, D. Eglin, Biomaterials for articular cartilage tissue engineering: Learning from biology, Acta Biomater., 65 (2018) 1–20.
  • 25. E. Rosellini, N. Barbani, P. Giusti, G. Ciardelli, C. Cristallini, Molecularly imprinted nanoparticles with recognition properties towards a laminin H–Tyr–Ile–Gly–Ser–Arg–OH sequence for tissue engineering applications, Biomed. Mater., 5 (2010) 1-11.
  • 26. S.M. DePorter, I. Lui, B.R. McNaughton, Programmed cell adhesion and growth on cell-imprinted polyacrylamide hydrogels, Soft Matter., 8 (2012) 10403–10408.
  • 27. S. Aslıyüce, N. Bereli, L. Uzun, M.A. Onur, R. Say, A. Denizli, Ion-imprinted supermacroporous cryogel, for in vitro removal of iron out of human plasma with beta thalassemia, Sep. Purif. Techn., 73 (2010) 243–249.
  • 28. I.N. Mariana, E.W. Marissa, E.G. Manuela, R.L. Rui, L.G. Pedro, A.P. Nicholas, Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications, Tissue Eng. Part B., 23 (2016) 27-43.
  • 29. R. Gao, S. Zhao, Y. Hao, L. Zhang, X. Cui, D. Liu, Y. Tang, Facile and green synthesis of polysaccharide-based magnetic molecularly imprinted nanoparticles for protein recognition, RSC Adv., 5 (2015) 88436-88444.
  • 30. D.M. Hawkins, D. Stevenson, S.M. Reddy, Investigation of protein imprinting in hydrogel-based molecularly imprinted polymers (HydroMIPs), Anal Chim Acta., 542 (2015) 61-65.
  • 31. D.R. Kryscio, M.Q. Fleming, N.A. Peppas, Protein conformational studies for macromolecularly imprinted polymers, Macromol Biosci., 12 (2012) 1137-1144.
  • 32. G. Vozzi, I. Morelli, F. Vozzi, C. Andreoni, E. Salsedo, A. Morachioli, P. Giusti, G. Ciardelli, SOFT-MI: A Novel Microfabrication Technique Integrating Soft-Lithography and Molecular Imprinting for Tissue Engineering Applications, Biotechnol. Bioengineer., 106, 5 (2010) 804-817.
  • 33. T. Guo, Y. Xia, G. Hao, B. Zhang, G. Fu, Z. Yuan, B. He, J.K. Kennedy, Chemically modified chitosan beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer, Carbohydr Polym., 62 (2005) 214-221.
  • 34. Y.Q. Xia, T.Y. Guo, M.D. Song, B.H. Zhang, B.L. Zhang, Hemoglobin recognition by imprinting in semiinterpenetrating polymer network hydrogel based on poly-acrylamide and chitosan, Biomacromolecules., 6 (2005) 2601-2606.
  • 35. R. Dan, Y. Wang, L. Du, S. Du, M. Huang, S. Yang, M. Zhang, The synthesis of molecular imprinted chitosan-gels copolymerized with multiform functional monomers at three different temperatures and the recognition for the template ovalbumin, Analyst., 138 (2013) 3433-3443.
  • 36. G. Criscenti, C.D. Maria, A. Longoni, C.A. Blitterswijk, H.A.M. Fernandes, G. Vozzi, L. Moroni, Soft-molecular imprinted electrospun scaffolds to mimic specific biological tissues, Biofabrication, 10 (2018) 045005, 1-9.
  • 37. Y. Wu, X. Liu, J. Cui, M. Meng, J. Dai, C. Li, Y. Yan, Bioinspired synthesis of high-performance nanocomposite imprinted membrane by a polydopamine-assisted metal-organic method, J. Hazard. Mater., 323 (2017) 663-673.
  • 38. İ. Koç, G. Baydemir, E. Bayram, H. Yavuz, A. Denizli, Selective removal of 17β-estradiol with molecularly imprinted particle-embedded cryogel systems, J. Hazard. Mater., 192 (2011) 1819-1826.
  • 39. H. Shaikh, M. Andaç, N. Memon, M.I. Bhanger, S.M. Nizamani, A. Denizli, Synthesis and characterization of molecularly imprinted polymer embedded composite cryogel discs: application for the selective extraction of cypermethrinsfrom aqueous samples prior to GC-MS analysis, RSC Adv., 5 (2015) 26604-26615.
  • 40. G. Székely, I.B. Valtcheva, J.F. Kim, A.G. Livingston, Molecularly imprinted organic solvent nanofiltration membranes–Revealing molecular recognition and solute rejection behavior, React. Funct. Polym., 86 (2015) 215-224.
  • 41. J.P. Fan, L. Li, Z.Y. Tian, C.F. Xie, F.T. Song, X.H. Zhang, J.H. Zhu, A novel free-standing flexible molecularly imprinted membrane for selective separation of synephrine in methanol–water media, J. Membrane Sci., 467 (2014) 13-22.
  • 42. S. Akgönüllü, H. Yavuz, A. Denizli, Preparation of imprinted cryogel cartridge for chiral separation of l-phenylalanine, Artif. Cell. Nanomed. B., 45 (2017) 800-807.
  • 43. X. Qiu, X.Y. Xu, Y. Liang, Y. Hua, H. Guo, Fabrication of a molecularly imprinted polymer immobilized membrane with nanopores and its application in determination of β2- agonists in pork samples, J. Chromatogr. A., 1429 (2016) 79- 85.
  • 44. S. Aslıyüce, L. Uzun, A.Y. Rad, S. Ünal, R. Say, A. Denizli, Molecular imprinting based composite cryogel membranes for purification of anti-hepatitis B surface antibody by fast protein liquid chromatography, J. Chromatogr. B., 889 (2012) 95-102.
  • 45. T. Li, L. Fan, Y. Wang, X. Huang, J. Xu, J. Lu, W. Xu, Molecularly imprinted membrane electrospray ionization for direct sample analyses, Anal. Chem., 89 (2017) 1453-1458.
  • 46. N.X. Wang, H.A. von Recum, Affinity-based drug delivery, Macromol. Biosci., 11 (2011) 321-332.
  • 47. D. Cunliffe, A. Kirby, C. Alexander, Molecularly imprinted drug delivery systems, Adv. Drug Deliv. Rev., 57 (2005) 1836- 1853.
  • 48. B. Sellergren, C.J. Allender, Molecularly imprinted polymers: A bridge to advanced drug delivery, Adv. Drug Deliv. Rev., 57 (2005) 1733-1741.
  • 49. J.Z. Hilt, M.E. Byrne, Configurational biomimesis in drug delivery: molecular imprinting of biologically significant molecules, Adv. Drug Deliv. Rev., 56 (2014) 1599-1620.
  • 50. V. Gemma, T.P. Judit, A. Fernando, Polymers and drug delivery dystems, Curr. Drug Deliv., 9 (2012) 367-394.
  • 51. N. Sood, A. Bhardwaj, S. Mehta, A. Mehta, Stimuli-responsive hydrogels in drug delivery and tissue engineering, Drug Deliv., 23 (2016) 758-80.
  • 52. C. Alvarez-Lorenzo, A. Concheiro, From drug dosage forms to intelligent drug delivery systems: a change of paradigm, in: Alvarez- Lorenzo, C., Concheiro, A. (eds.), Smart materials for drug delivery, Cambridge: RSC, (2013) pp. 1-32.
  • 53. C. Alvarez-Lorenzo, A. Concheiro, Molecularly imprinted polymers as components of drug delivery systems, in: Alvarez-Lorenzo, C., Concheiro, A. (eds.), Handbook of molecularly imprinted polymers, Shrewsbury, U.K., Smithers Rapra Publishing, (2013) pp. 309-49.
  • 54. C. Alvarez-Lorenzo, C. Gonza´lez-Chomo´n. A. Concheiro, Molecularly imprinted hydrogels for affinity-controlled and stimuli responsive drug delivery, in: Alvarez-Lorenzo, C., Concheiro, A., Schneider, H.J., Shahinpoor, M. (eds.), Smart materials for drug delivery. Cambridge: RSC (2013) pp. 228- 60.
  • 55. C. Alvarez-Lorenzo, F. Yan˜ez-Gomez, A. Concheir, Modular biomimetic drug delivery systems, in: Dumitriu, S., Popa, V. (eds.) Polymeric materials, medicinal and pharmaceutical applications. Boca Raton, FL: CRC Press, (2013d) pp. 85–122.
  • 56. A.Z. Shabi, Molecular imprinted polymers as drug delivery vehicles, Drug Delivery, 23 (2016) 2262-2271.
  • 57. R. Suedee, The use of molecularly imprinted polymers for dermal drug delivery. Pharm. Anal. Acta. 4 (2013) 264.
  • 58. G. Vlatakis, L.I. Andersson, R. Müller, K. Mosbach, Drug assay using antibody mimics made by molecular imprinting. Nature, 361 (1993) 645-647.
  • 59. R. Suedee, C. Bodhibukkana, N. Tangthong, C. Amnuaikit, S. Kaewnopparat, T. Srichana, Development of a reservoir-type transdermal enantioselective-controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane. J. Control. Release, 129 (2018) 170- 178.
  • 60. M.C. Norell, H.S. Andersson, I.A. Nicholls, 1998. Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism. J. Mol. Recognit., 11 (1998) 98-102.
  • 61. C.J. White, M.K. McBride, K.M. Pate, A. Tieppo, M.E. Byrne, Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses, Biomaterials, 32 (2011) 5698−5705.
  • 62. Y. Zhang, C. Deng, S. Liu, J. Wu, Z. Chen, C. Li, W. Lu, Active targeting of tumors through conformational epitope imprinting, Angew. Chem., Int. Ed., 54 (205) 5157−5160.
  • 63. X. Shen, J. S. Bonde, T. Kamra, L. Bülow, J.C. Leo, D. Linke, L. Ye, Bacterial imprinting at pickering emulsion interfaces, Angew. Chem. Int. Ed., 53 (2014) 10687−10690.
  • 64. K. Çetin, A. Denizli, 5-Fluorouracil delivery from metalion mediated molecularly imprinted cryogel discs, Colloid. Surface. B. 126 (2015) 401-406.
  • 65. P. Öncel, K. Çetin, A.A. Topçu, H. Yavuz, A. Denizli, Molecularly imprinted cryogel membranes for mitomycin C delivery, J. Biomat. Sci. Polym. E., 28 (2017) 519-531.
  • 66. D. Türkmen, N. Bereli, M.E. Çorman, H. Shaikh, S. Akgöl, A. Denizli, Molecular imprinted magnetic nanoparticles for controlled delivery of mitomycin C, Artif. Cells Nanomed. Biotechnol., 42 (2014) 316-322.
  • 67. M. Caka, T. Ceren, D.A. Uygun, M. Uygun, S. Akgöl, A. Denizli, Controlled release of curcumin from poly(HEMA-MAPA) membrane. Artif. Cells Nanomed. Biotechnol., 45 (2017) 426-431.
  • 68. X.L. Liu, H.F. Yao, M.H. Chai, W. He, Y.P. Huang, Z.S. Liu, Green synthesis of carbon nanotubes-reinforced molecularly imprinted polymer composites for drug delivery of fenbufen, AAPS PharmSciTech., 19 (2018) 3995-3906.
  • 69. M. Bakhshpour, H. Yavuz, A. Denizli, Controlled release of mitomycin C from PHEMAH–Cu(II) cryogel membranes, Artif. Cells Nanomed. Biotechnol. 46 (2018) 946-954.
  • 70. F. Canfarotta, L. Lezina, A. Guerreiro, J. Czulak, A. Petukhov, A. Daks, K. Smolinska-Kempisty, A. Poma, S. Piletsky, N.A. Barlev, Specific drug delivery to cancer cells with doubleimprinted nanoparticles against epidermal growth factor receptor, Nano Letters 18 (2018) 4641-4646.
  • 71. B.D. Meshram, A.K. Agrawal, S. Adil, S. Ranvir, K.K. Sande, Biosensor and its application in food and dairy ındustry: a review, Int. J. Curr. Microbiol. App. Sci. 7(2) (2018) 3305- 3324.
  • 72. K. Haupt, and K. Mosbach, Molecularly imprinted polymers and their use in biomimetic sensors, Chem. Rev. 100 (2000) 2495-2504.
  • 73. M. Nayak, A. Kotian, S. Marathe, D. Chakravortty, Detection of microorganisms using biosensors- A smarter way towards detection techniques, Biosens Bioelectron., 25 (2009) 661- 667.
  • 74. V. Velusamy, K. Arshak, O. Korostynska, K. Oliwa, C. Adley, An overview of foodborne pathogen detection: In the prespective of biosensors, Biotechnol. Adv. 28 (2) (2010) 232-254.
  • 75. M.A. Arugula and A. Simonian, Novel trends in affinity biosensors: current challenges and perspectives, Meas. Sci. Technol., 25(3) (2014) 032001- 032022.
  • 76. L. Krejcova, P. Michalek, M.M. Rodrigo, Z. Heger, S. Krizkova, M. Vaculovicova, D. Hynek, V. Adam, R. Kizek, Nanoscale virus biosensors: state of the art, Nanobiosens. Dis. Diagn., 4 (2015) 47-66.
  • 77. A. Singh, S. Poshtiban, S. Evoy, Recent advances in bacteriophage based biosensors for food-borne pathogen detection, Sensors, 13(2) (2013) 1763-1786.
  • 78. O.S. Ahmad, T.S. Bedwell, C. Esen, A. Garcia-Cruz, S.A. Piletsky, 2018. Molecularly ımprinted polymers in electrochemical and optical sensors, Trend Biotechnol. 37(3) (2018) 294-309.
  • 79. J. Yasmin, M.R. Ahmed, B.K. Cho, Biosensors and their applications in food safety: a review, J. Biosystem. Eng., 41(3) (2016) 240-254.
  • 80. Z. Zhao and H. Jiang, Enzyme-based electrochemical biosensors. (Eds.). Pier Andrea Serra, Biosensors, Intech, Croatia, (2010) 1-22.
  • 81. C.M. Kisukuri and L.H. Andrade, Production of chiral compounds using immobilized cells as a source of biocatalysts. Org. Biomol. Chem. 40 (13) (2015) 10086- 10107.
  • 82. Y. Saylan, S. Akgönüllü, D. Çimen, A. Derazshamshir, N. Bereli, F. Yılmaz, A. Denizli, Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides, Sensor. Actuator. B-Chem. 241 (2017) 446-454.
  • 83. S. Akgönüllü, H. Yavuz, A. Denizli, SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1, Talanta, (2020) 121219.
  • 84. Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, M. Hide, Application of spr imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy, Allergol. Int. 62 (2013) 163-169.
  • 85. A.M. Shrivastav, S.K. Mishra, B.D. Gupta, Fiber optic SPR sensor for the detection of melamine using molecular imprinting, Sensor. Actuator. B-Chem. 212 (2015) 404–410.
  • 86. S.J.Y. Peng, B. Ning, J. Bai, Y. Liu, N. Zhang, Z. Gao, Surface plasmon resonance sensor based on molecularly imprinted polymer film for detection of histamine, Sensor Actuator B-Chem. 22 (2015) 15–21.
  • 87. N. Cennamo, G. D’Agostino, M. Pesavento, L. Zeni, High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine, Sensor. Actuator. B-Chem. 191 (2014) 529–536.
  • 88. B.B. Prasad, D. Jauhari, M.P. Tiwari, Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate, Biosens. Bioelectron. 59 (2014) 81–88.
  • 89. Q. Han, X. Shen, W. Zhu, C. Zhu, X. Zhou, H. Jiang, Magnetic sensing film based on Fe3 O4 @Au-GSH molecularly imprinted polymers for the electrochemical detection of estradiol, Biosens. Bioelectron. 79 (2016) 180–186.
  • 90. L.Z. Wang and J. Zhang, Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole– graphene–gold nanoparticles modified electrode, Sensor. Actuator. B-Chem. 192 (2014) 642– 647.
  • 91. X. Kan, Z. Xing, A. Zhu, Z. Zhao, G. Xu, C. Li, H. Zhou, Molecularly imprinted polymers based electrochemical sensor for bovine hemoglobin recognition, Sensor. Actuator. B-Chem. 168 (2012) 395– 401.
  • 92. M.B. Gholivand, M. Torkashvand, A novel high selective and sensitive metronidazole voltammetric sensor based on a molecularly imprinted polymer-carbon paste electrode, Talanta. 84 (2011) 905–912.
  • 93. Z. Yang, C. Zhang, Designing of MIP-based QCM sensor for the determination of Cu(II) ions in solution, Sensor. Actuator. B-Chem. 142 (2009) 210–215.
  • 94. M. Hussain, K. Kotova, P.A. Lieberzeit, Molecularly imprinted polymer nanoparticles for formaldehyde sensing with QCM, Sensors,16 (2016) 1011.
  • 95. K. Matsumoto, B.D.B. Tiu, A. Kawamura, R.C. Advincula, T. Miyata, QCM sensing of bisphenol A using molecularly imprinted hydrogel/conducting polymer matrix, Polymer Journal 48 (2016) 525–532.
  • 96. F. Feng, J. Zheng, P. Qin, T. Hanb, D. Zhaoa, A novel quartz crystal microbalance sensor array based on molecularly imprinted polymers for simultaneous detection of clenbuterol and its metabolites, Talanta. 167 (2017) 94–102.
  • 97. Battal, D., Akgönüllü, S., Yalçın, S.M., Yavuz, H., Denizli, A., Molecularly imprinted polymer based quartz crystal microbalance sensor system for sensitive and label-free detection of synthetic cannabinoids in urine, Biosens. Bioelectron., 111 (2018) 10–17.
  • 98. W.J. Brittain and S. Minko, S., A structural definition of polymer brushes. J. Poly. Sci. Part A Poly. Chem. 45 (2007) 3505–3512.
  • 99. G. Pan, Y. Zhang, X. Guo, C. Li, H. Zhang, An efficient approach to obtaining water-compatible and stimuliresponsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Biosens. Bioelectron. 26 (2010) 976–982.
  • 100. P. Ma, Z. Zhou, J. Dai, L. Qin, X. Ye, X. Chen, J. He, A. Xie, Y. Yan X. Li, A biomimetic Setaria viridis-inspired imprinted nano adsorbent: green synthesis and application to the highly selective and fast removal of sulfamethazine. RSC Adv. 6 (2016) 9619-9630.
  • 101. J. Dai, Z. Zhou, Y. Zou, Z. Wei, X. Dai, C. Li, Y. Yan, Surface imprinted core-shell nanorod with ultrathin watercompatible polymer brushes for specific recognition and adsorption of sulfamethazine in water medium. J. Appl. Polym. Sci., 131(19) (2014) 1-11.
  • 102. J. Dai, Y. Zou, Z. Zhou, X. Dai, J. Pan, P. Yu, T. Zou, Y. Yan, C. Li, Narrowly dispersed imprinted microspheres with hydrophilic polymer brushes for the selective removal of sulfamethazine. RSC Adv., 4 (2014) 1965-1973.
  • 103. Y. Yang, H. Niu, H. Zhang, Direct and highly selective drug optosensing in real, undiluted biological samples with quantum-dot-labeled hydrophilic molecularly imprinted polymer microparticles. Appl. Mater. Interfaces, 8 (2016)15741−15749.
  • 104. H. Niu, Y. Yang, H. Zhang, Efficient one-pot synthesis of hydrophilic and fluorescent molecularly imprinted polymer nano particles for direct drug quantification in real biological samples. Biosens. Bioelectron., 74 (2015) 440–446.
  • 105. B. Prasad and A. Kumar, Development of molecularly imprinted polymer nanoarrays of N-acryloyl-2- mercaptobenzamide on a silver electrode for ultratrace sensing of uracil and 5-fluorouracil, J. Mater. Chem. B, 3 (2015) 5864-5876.
  • 106. D. Oliveira, R.C.S. Dias, M.R.P.F.N. Costa, Modeling RAFT Gelation and Grafting of Polymer Brushes for the Production of Molecularly Imprinted Functional Particles. Macromol. Symp., 370 (2016) 52–65.
  • 107. D. Oliveira, C.P. Gomes, R.C.S. Dias, M.R.P.F.N. Costa, Molecular imprinting of 5-fluorouracil in particles with surface RAFT grafted functional brushes. React. Funct. Poly., 107 (2016) 35–45.
  • 108. A.K. Patel, P.S. Sharma, B.B. Prasad, Electrochemical sensor for uric acid based on a molecularly imprinted polymer brush grafted to tetraethoxysilane derived sol-gel thin film graphite electrode. Mater. Sci. Engin. C, 29 (2009) 1545– 1553.
  • 109. S. Xua, H. Lua, L. Chen, Double water compatible molecularly imprinted polymers appliedas solid-phase extraction sorbent for selective preconcentration anddetermination of triazines in complicated water samples. J. Chromatogr. A, 1350 (2014) 23–29.
  • 110. Y. Yang, Z. Wang, Z. Niu, H. Zhang, One-pot synthesis of quantum dot-labeled hydrophilic molecularly imprinted polymer nanoparticles for direct optosensing of folic acid in real, undiluted biological samples. Biosens. Bioelectron., 86 (2016) 580–587.
  • 111. L. Zhao, F. Zhao, B. Zeng, Preparation of surface-imprinted polymer grafted with water-compatible external layer via RAFT precipitation polymerization for highly selective and sensitive electrochemical determination of brucine. Biosens. Bioelectron. 60 (2014) 71–76.