Çeşitli Uygulamalar için Yeni Fırsatlar Sağlayan Uyarı-Cevap Polimerler

Uyaranlara duyarlı polimerler, çevrelerindeki koşullarda küçük bir değişiklik olduğunda fiziksel veya kimyasal özelliklerini önemli ölçüde değiştirir. Koşullardaki değişikliklere bağlı olarak, bu tür kopolimerler kendiliğinden bir araya gelebilir ve çeşitli nanoboyutlu yapılar oluşturabilir. Bu tür polimerlerin farklı alanlarda önemli kullanımları vardır. Bu derlemede, çevreye duyarlı farklı polimerlerin mimarileri, duyarlılıklarına göre sınıflandırmaları ve çeşitli alanlardaki uygulamaları gibi temel konulardaki bazı güncel literatür raporlarının bir analizini sunuyoruz. Son yirmi yılda, biyoteknoloji, nanoteknoloji, kolloid ve yüzey bilimi, malzeme bilimi vb. dahil olmak üzere çeşitli uygulamalar için uygun uyarıcıya duyarlı yeni polimerlerin ve polimerik malzemelerin hazırlanmasına yönelik sentetik yöntemlerde ve stratejilerde büyük gelişmeler olmuştur. Çok geniş kapsamı olan bu polimer türünün okuyucular tarafından daha anlaşılır olabilmesi için genellikle temel kavramlar/konular şematize edilmiştir. Ayrıca, bu malzemelerin üretiminde izlenebilecek stratejiler yeter düzeyde verilmeye çalışılmıştır.

Stimuli-Responsive Polymers Providing New Opportunities for Various Applications

Stimuli-responsive polymers significantly change their physical or chemical properties when there is a small change inthe conditions of their environments. Depending on the changes on conditions, they can self-assemble to form variousnanosized structures having important usages in different fields. In this review, we report an analysis of some of the recentliteratures on the basic subjects such as the architectures of different environmentally sensitive polymers, their classifications according to susceptibility and applications in various areas. During the last two decades, there have been great reportsin the strategies for the preparation of novel stimuli-responsive polymers and/or polymeric materials which are suitable forvarious applications including materials science, nanotechnology, biotechnology, colloid and surface science, etc. In orderto make this very broad polymer type more understandable to readers, basic concepts/topics are generally schematized.Furthermore, the strategies that can be followed in the production of these materials are tried to be given at a sufficientlevel.

___

  • 1. Z.Q. Cao, G.J. Wang, Multi-stimuli-responsive polymer materials: particles, films, and bulk gels, Chem. Rec., 16 (2016) 1398-1435.
  • 2. P. Liu, Multiresponsive polymeric carriers, stimuli responsive polymeric nanocarriers for drug delivery applications, Woodhead Publishing, 2019.
  • 3. G. Pasparakis, M. Vamvakaki, Multiresponsive polymers: Nano-sized assemblies, stimuli-sensitive gels and smart surfaces, Polym. Chem., 2 (2011) 1234-1248.
  • 4. F. Liu, M.W. Urban, Recent advances and challenges in designing stimuli-responsive polymers, Prog. Polym. Sci., 35 (2010) 3-23.
  • 5. P. Schattling, F.D. Jochum, P. Theato, Multi-stimuli responsive polymers - the all-in-one talents, Polym. Chem., 5 (2014) 25-36.
  • 6. S. Guragain, B.P. Bastakoti, V. Malgras, K. Nakashima, Y. Yamauchi, Multi-stimuli-responsive polymeric materials, Chem. Eur. J., 21 (2015) 13164-13174.
  • 7. G. Koçak, C. Tuncer, V. Bütün, pH-responsive polymers, Polym. Chem., 8 (2017) 144-176.
  • 8. V. Bütün, S.P. Armes, N.C. Billingham, Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers, Polymer, 42 (2001) 5993-6008.
  • 9. V. Bütün, N.C. Billingham, S.P. Armes, Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer: Formation of micelles and reverse micelles in aqueous solution, J. Am. Chem. Soc., 120 (1998) 11818-11819.
  • 10. D. Qureshi, S.K. Nayak, S. Maji, A. Anis, D. Kim, K. Pal, Environment sensitive hydrogels for drug delivery applications, Eur. Polym. J., (2019) 109220.
  • 11. M.M. Xu, R.J. Liu, Q. Yan, Biological stimuli-responsive polymer systems: design, construction and controlled selfassembly, Chin. J. Polym. Sci., 36 (2018) 347-365.
  • 12. Q. Yan, W. Sang, H2 S Gasotransmitter-responsive polymer vesicles, Chem. Sci., 7 (2016) 2100-2105.
  • 13. S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery, J. Controlled Release, 126 (2008) 187-204.
  • 14. V. Bütün, S.P. Armes, N.C. Billingham, Z. Tuzar, A. Rankin, J. Eastoe, R. Heenan, The remarkable “Flip− Flop” selfassembly of a diblock copolymer in aqueous solution, Macromolecules, 34 (2001) 1503-1511.
  • 15. O.E. Philippova, D. Hourdet, R. Audebert, A.R. Khokhlov, pHresponsive gels of hydrophobically modified poly(acrylic acid), Macromolecules, 30 (1997) 8278-8285.
  • 16. F. Checot, J. Rodriguez-Hernandez, Y. Gnanou, S. Lecommandoux, pH-responsive micelles and vesicles nanocapsules based on polypeptide diblock copolymers, Biomol. Eng., 24 (2007) 81-85.
  • 17. S.Y. Liu, N.C. Billingham, S.P. Armes, A schizophrenic watersoluble diblock copolymer, Angew. Chem., Int. Ed., 40 (2001) 2328-2331.
  • 18. F.F. Taktak, V. Bütün, Synthesis and physical gels of pH- and thermo-responsive tertiary amine methacrylate based ABA triblock copolymers and drug release studies, Polymer, 51 (2010) 3618-3626.
  • 19. P. Lundberg, N.A. Lynd, Y.N. Zhang, X.H. Zeng, D.V. Krogstad, T. Paffen, M. Malkoch, A.M. Nystrom, C.J. Hawker, pHtriggered self-assembly of biocompatible histaminefunctionalized triblock copolymers, Soft Matter, 9 (2013) 82-89.
  • 20. F.T. Liu, A. Eisenberg, Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block-polystyrene-blockpoly(4-vinyl pyridine), J. Am. Chem. Soc., 125 (2003) 15059- 15064.
  • 21. J. Rao, , Y. Zhang, J. Zhang, S. Liu, Facile preparation of well-defined AB>2 Y-shaped miktoarm star polypeptide copolymer via the combination of ring-opening polymerization and click chemistry, Biomacromolecules, 9 (2008) 2586-2593.
  • 22. C. Fernyhough, A.J. Ryan, G. Battaglia, pH controlled assembly of a polybutadiene-poly(methacrylic acid) copolymer in water: packing considerations and kinetic limitations, Soft Matter, 5 (2009) 1674-1682.
  • 23. Y.Y. Xu, S. Bolisetty, M. Drechsler, B. Fang, J.Y. Yuan, M. Ballauff, A.H.E. Muller, pH and salt responsive poly(N,Ndimethylaminoethyl methacrylate) cylindrical brushes and their quaternized derivatives, Polymer, 49 (2008) 3957-3964.
  • 24. V. Bütün, I. Bannister, N.C. Billingham, D.C. Sherrington, S.P. Armes, Synthesis and characterization of branched watersoluble homopolymers and diblock copolymers using group transfer polymerization, Macromolecules, 38 (2005) 4977- 4982.
  • 25. V. Bütün, C.E. Bennett, M. Vamvakaki, A.B. Lowe, N.C. Billingham, S.P. Armes, Selective betainisation of tertiary amine methacrylate block copolymers, J. Mater. Chem., 7 (1997) 1693-1695.
  • 26. G. Koçak, , G. Solmaz, V. Bütün, A new approach for the synthesis of ph-responsive cross-linked micelles from a poly(glycidyl methacrylate)-based functional copolymer, Macromol. Chem. Phys., 217 (2016) 2744-2754.
  • 27. C. Tuncer, Y. Samav, D. Ülker, S.B. Baker, V. Bütün, Multiresponsive microgel of a water-soluble monomer via emulsion polymerization, J. Appl. Polym. Sci., 132 (2015)
  • 28. G. Koçak, Preparation and catalytic properties of modified PGMA-based pH-responsive hydrogel films as a novel template for in situ synthesis of Au, Ag, and Au: Ag nanoparticles, J. Appl. Polym. Sci., 137 (2020)
  • 29. G. Kocak, G. Solmaz, C. Tuncer, V. Bütün, Modification of glycidyl methacrylate based block copolymers and their aqueous solution behaviours, Eur. Polym. J., 110 (2019) 364- 377.
  • 30. B.R. Saunders, H.M. Crowther, B. Vincent, Poly[(methyl methacrylate)-co-(methacrylic acid)] microgel particles: Swelling control using pH, cononsolvency, and osmotic deswelling, Macromolecules, 30 (1997) 482-487.
  • 31. R.X. Chang, Y.L. Tian, Y. Wang, J.L. Qin, pH-responsive vesicles with tunable membrane permeability and hydrodynamic diameters from a cross-linkable amphiphilic block copolymer, Nanomater. Nanotechnol., 6 (2016)
  • 32. C. Hippius, V. Bütün, I. Erel-Göktepe, Bacterial anti-adhesive properties of a monolayer of zwitterionic block copolymer micelles, Mater. Sci., Eng. C, 41 (2014) 354-362.
  • 33. L. Mi, M.T. Bernards, G. Cheng, Q.M. Yu, S.Y. Jiang, pH responsive properties of non-fouling mixed-charge polymer brushes based on quaternary amine and carboxylic acid monomers, Biomaterials, 31 (2010) 2919-2925.
  • 34. B. Onat, V. Bütün, S. Banerjee, I. Erel-Göktepe, Bacterial anti-adhesive and pH-induced antibacterial agent releasing ultra-thin films of zwitterionic copolymer micelles, Acta Biomater., 40 (2016) 293-309.
  • 35. S. Ulusan, V. Bütün, S. Banerjee, I. Erel-Göktepe, Biologically functional ultrathin films made of zwitterionic block copolymer micelles, Langmuir, 35 (2019) 1156-1171.
  • 36. P. Yusan, I. Tuncel, V. Bütün, A.L. Demirel, I. Erel-Göktepe, pH-responsive layer-by-layer films of zwitterionic block copolymer micelles, Polym. Chem., 5 (2014) 3777-3787.
  • 37. I. Erel, H.E. Karahan, C. Tuncer, V. Bütün, A.L. Demirel, Hydrogen-bonded multilayers of micelles of a dually responsive dicationic block copolymer, Soft Matter, 8 (2012) 827-836.
  • 38. D. Gündoğdu, V. Bütün, I. Erel-Göktepe, Preparation of layerby-layer films with remarkably different ph-stability and release properties using dual responsive block copolymer micelles, Macromol. Chem. Phys., 219 (2018) 1800128.
  • 39. F. Zhou, W.T.S. Huck, Three-stage switching of surface wetting using phosphate-bearing polymer brushes, Chem. Commun, 48 (2005) 5999-6001.
  • 40. G.W. de Groot, M.G. Santonicola, K. Sugihara, T. Zambelli, E. Reimhult, J. Voros, G.J. Vancso, Switching transport through nanopores with ph-responsive polymer brushes for controlled ion permeability, ACS Appl. Mater. Interfaces, 5 (2013) 1400-1407.
  • 41. A. Brunsen, C. Diaz, L.I. Pietrasanta, B. Yameen, M. Ceolin, G.J.A.A. Soler-Illia, O. Azzaroni, Proton and calcium-gated ionic mesochannels: phosphate-bearing polymer brushes hosted in mesoporous thin films as biomimetic interfacial architectures, Langmuir, 28 (2012) 3583-3592.
  • 42. T. Vasudevan, S. Das, S. Sodaye, A.K. Pandey, A.V.R. Reddy, Pore-functionalized polymer membranes for preconcentration of heavy metal ions, Talanta, 78 (2009) 171-177.
  • 43. C.H. Li, Z.S. Ge, J. Fang, S.Y. Liu, Synthesis and self-assembly of coil-rod double hydrophilic diblock copolymer with dually responsive asymmetric centipede-shaped polymer brush as the rod segment, Macromolecules, 42 (2009) 2916-2924.
  • 44. V. Butun, S. Liu, J.V.M. Weaver, X. Bories-Azeau, Y. Cai, S.P. Armes, A brief review of ‘schizophrenic’ block copolymers, React. Funct. Polym., 66 (2006) 157-165.
  • 45. J. Rodriguez-Hernandez, S. Lecommandoux, Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers, J. Am. Chem. Soc., 127 (2005) 2026-2027.
  • 46. Z. Ge, J. Xu, J. Hu, Y. Zhang, S. Liu, Synthesis and supramolecular self-assembly of stimuli-responsive water-soluble Janus-type heteroarm star copolymers, Soft Matter, 5 (2009) 3932-3939.
  • 47. J.R. Lovett, N.J. Warren, L.P.D. Ratcliffe, M.K. Kocik, S.P. Armes, pH-responsive non-ionic diblock copolymers: ionization of carboxylic acid end-groups induces an order-order morphological transition, Angew. Chem., Int. Ed., 54 (2015) 1279-1283.
  • 48. N.J.W. Penfold, J.R. Lovett, N.J. Warren, P. Verstraete, J. Smets, S.P. Armes, pH-responsive non-ionic diblock copolymers: protonation of a morpholine end-group induces an order-order transition, Polym. Chem., 7 (2016) 79-88.
  • 49. C. Feng, Z. Shen, L.N. Gu, S. Zhang, L.T. Li, G.L. Lu, X.Y. Huang, Synthesis and characterization of PNIPAM-b-(PEA-g-PDEA) double hydrophilic graft copolymer, J. Polym. Sci., Part A: Polym. Chem., 46 (2008) 5638-5651.
  • 50. C. Maiti, R. Banerjee, S. Maiti, D. Dhara, pH-induced vesicleto-micelle transition in amphiphilic diblock copolymer: investigation by energy transfer between in situ formed polymer embedded gold nanoparticles and fluorescent dye, Langmuir, 31 (2015) 32-41.
  • 51. K.E.B. Doncom, H. Willcock, R.K. O’Reilly, The pH induced vesicle to micelle morphology transition of a THP-protected polymer, J. Polym. Sci., Part A: Polym. Chem., 52 (2014) 3026- 3031.
  • 52. W.D. Zhang, W. Zhang, N.C. Zhou, J. Zhu, Z.P. Cheng, X.L. Zhu, Synthesis of miktoarm star amphiphilic block copolymers via combination of NMRP and ATRP and investigation on selfassembly behaviors, J. Polym. Sci., Part A: Polym. Chem., 47 (2009) 6304-6315.
  • 53. Z. Iatridi, C. Tsitsilianis, pH responsive self assemblies from an An-core-(B-b-C) n heteroarm star block terpolymer bearing oppositely charged segments, Chem. Commun., 47 (2011) 5560-5562.
  • 54. P. Zhou, Y.Y. Liu, L.Y. Niu, J. Zhu, Self-assemblies of the six-armed star triblock ABC copolymer: pH-tunable morphologies and drug release, Polym. Chem., 6 (2015) 2934-2944.
  • 55. J. Aleman, A.V. Chadwick, J. He, M. Hess, K. Horie, R.G. Jones, P. Kratochvil, I. Meisel, I. Mita, G. Moad, S. Penczek, R.F.T. Stepto, Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007), Pure Appl. Chem., 79 (2007) 1801-1827.
  • 56. Y. Li, Y. Tang, R. Narain, A.L. Lewis, S.P. Armes, Biomimetic stimulus-responsive star diblock gelators, Langmuir, 21 (2005) 9946-9954.
  • 57. X. Huang, S.I. Sevimli, V. Bulmuş, pH-labile sheddable block copolymers by RAFT polymerization: Synthesis and potential use as siRNA conjugates, Eur. Polym. J., 49 (2013) 2895-2905.
  • 58. Y. Jin, L. Song, Y. Su, L.J. Zhu, Y. Pang, F. Qiu, G.S. Tong, D.Y. Yan, B.S. Zhu, X.Y. Zhu, Oxime linkage: A robust tool for the design of pH-sensitive polymeric drug carriers, Biomacromolecules, 12 (2011) 3460-3468.
  • 59. S. Aryal, C.M.J. Hu, L.F. Zhang, Polymer-cisplatin conjugate nanoparticles for acid-responsive drug delivery, ACS Nano, 4 (2010) 251-258.
  • 60. K. Dan, S. Ghosh, One-pot synthesis of an acid-labile amphiphilic triblock copolymer and its pH-responsive vesicular assembly, Angew. Chem., Int. Ed., 52 (2013) 7300- 7305.
  • 61. R. Banerjee, S. Maiti, D. Dey, D. Dhara, Polymeric nanostructures with pH-labile core for controlled drug release, J. Colloid Interface Sci., 462 (2016) 176-182.
  • 62. P. Samanta, K. Kapat, S. Maiti, G. Biswas, S. Dhara, D. Dhara, pH-labile and photochemically cross-linkable polymer vesicles from coumarin based random copolymer for cancer therapy, J. Colloid Interface Sci., 555 (2019) 132-144.
  • 63. C.P. Zhou, Z.W. Shi, F. Xu, Y. Ling, H.Y. Tang, Preparation and properties of thermo- and pH-responsive polypeptide bearing OEG and aldehyde pendants, Colloid Polym. Sci., 298 (2020) 1293-1302.
  • 64. S.J. Lee, K.H. Min, H.J. Lee, A.N. Koo, H.P. Rim, B.J. Jeon, S.Y. Jeong, J.S. Heo, S.C. Lee, Ketal cross-linked poly(ethylene glycol)-poly(amino acid)s copolymer micelles for efficient intracellular delivery of doxorubicin, Biomacromolecules, 12 (2011) 1224-1233.
  • 65. E.S. Read, S.P. Armes, Recent advances in shell cross-linked micelles, Chem. Commun., (2007) 3021-3035.
  • 66. Cui, J.W., Y. Yan, Y.J. Wang, and F. Caruso, Templated Assembly of pH-Labile Polymer-Drug Particles for Intracellular Drug Delivery, Adv. Funct. Mater., 22 (2012) 4718-4723.
  • 67. O. Sedláček, M. Hrubý, M. Studenovský, D. Větvička, J. Svoboda, D. Kaňková, J. Kovář, K. Ulbrich, Polymer conjugates of acridine-type anticancer drugs with pH-controlled activation, Bioorg. Med. Chem., 20 (2012) 4056-4063.