Polisakkaritlerin yapısal parametrelerinin radyasyonla uyarılmış bozunmasına etkisi

Özellikle son on yılda kappa karragenan, sodyum aljinat [1–4] ve kitosan’ın [5–10] düşük molekül ağırlıklı fraksiyonlarının ya da oligosakkaritlerinin katı halde ve farklı çözelti derişimlerinde radyasyonla hızlandırılmış bozunma ile hazırlanması, modifikasyonu ve hazırlanan bu fraksiyonların bitki büyütme hızlandırıcısı, bitki koruyucusu olarak ve doku mühendisliği uygulamalarında kullanılmasına yönelik yoğun bir ilgi vardır. Ancak ne polisakkaritlerin radyasyonla uyarılmış bozunma çalışmalarında ne de sodyum aljinat, kitosan, galaktomannan oligosakkaritlerinin bitki büyütme hızlandırıcısı ve bitki koruyucusu olarak hazırlanması konusunda [10-12] yapılan diğer çalışmalarda polisakkarit’in yapısal parametrelerinin etkisi konusu bugüne kadar yazarlar tarafından dikkate alınmamıştır. Şen ve arkadaşları tarafından yapılan son çalışmalarda [13-15] literatürdeki bu boşluk kapatılmış ve polisakkaritlerin radyasyonla uyarılmış bozunmasına yapısal parametrelerin etkisi ayrıntılarıyla açıklanmıştır. Yakın zamanda yapılan tüm bu çalışmalar bu derlemede özetlenmiştir.

Effects of polysaccharide structural parameters on radiation-induced degradation

Especially, in last decade considerable attention has recently been directed to the modification and preparation of low-molecular weight-fractions or oligosaccharides of kappa carrageenan, sodium alginate [1-4] and Chitosan [5-10] by radiation induced degradation in dry, and various concentrations in aqueous solutions in order to use mainly in the plant growth promoter, plant protectors and tissue engineering applications. Neither in these radiation induced degradation studies of NaAlg, nor in other studies on the preparation of oligosaccharides of sodium alginate, Chitosan, galactomannans as the plant growth promoter and plant protectors [10-12] the effect of structural parameters of polysaccharide type natural polymers was considered by the authors. By the recent studies Şen et al., [13-15], this deficiency in the literature was filled and the effects of the structural parameters of some polysaccharide on the radiation-induced degradation are explained in details. All these recent studies are summarized in this review.

___

  • N.Q. Hien, N. Nagasawa, L.X. Tham, F. Yoshii, V. Dang, H.H. Mitomo, K. Makuuchi, T. Kume, Growth- promotion of plants with depolymerized alginates by irradiation. Radiat. Phys. Chem., 59 (2000) 97.
  • T. Aftab, A. Masroor Khan, M.N. Idrees, M. Moinuddin, N. Hashmi, L. Varshney, Enhancing the growth, photosynthetic capacity and artemisinin content in rtemisia annua L. by irradiated sodium alginate. Radiat. Phys. Chem., 80 (2011) 833.
  • L.Q. Luan, N. Nagasawa, V.T.T. Ha, N.Q. Hien, T.M. Nakanishi, Enhancement of plant growth stimulation activity of irradiated alginate by fractionation. Radiat. Phys. Chem. 78 (2009) 796.
  • M.Z.I. Mollah, M.A. Khan, R.A. Khan, Effect of gamma irradiated sodium alginate on redamaranth (Amaranthus cruentus L.) as growth promoter. Radiat. Phys. Chem., 78 (2009) 61.
  • R. Czechowska-Biskup, B. Rokita, P. Ulanski, J.M. Rosiak, Radiation-induced and sonochemical degradation of chitosan as a way to increase its fat- binding capacity. Nucl. Instrum. Methods Phys. Res. B, 236 (2005) 383.
  • I. Zainol, H. Mdakil, A. Mastor, Effect of γ-irradiation on the physical and mechanical properties of chitosan powder. Mater. Sci. Eng., C29 (2009) 292.
  • N.Q. Hien, Radiation degradation of chitosan and some biological effects. Radiation Processing of Polysaccharides, IAEA-TECDOC-1422. IAEA, Vienna, Austria, (2004 ) 125–136 pp.
  • L. Relleve, N. Nagasawa, L.Q. Luanc, T. Yagi, C. Aranilla, L., Abad, T. Kume, F., Yoshii, A. Dela Rosa, Degradation of carrageenan by radiation. Polym. Degrad. Stability, 87 (2005) 403.
  • L.X. Thama, N. Nagasawa, S. Matsuhashi, N.S. Ishioka, T. Ito, T. Kume, Effect of radiation-degraded chitosan on plants stressed with vanadium. Radiat. Phys. Chem., 61 (2001) 171.
  • N. Nagasawa, H. Mitomo, F. Yoshii, T. Kume, Radiation-induced degradation of sodium alginate. Polym. Degrad. Stability, 69 (2000) 279.
  • J.M. Wasikiewicz, F. Yoshii, N. Nagasawa, R.A. Wach, H. Mitomo, Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Radiat. Phys. Chem., 73 (2005) 287.
  • T. Kume, N. Nagasawa, F. Yoshii, Utilization of carbohydrates by radiation processing. Radiat. Phys. Chem., 63 (2002) 625.
  • M. Şen, B. Yolaçan, O. Güven, Radiation induced degradation of Galactomannan polysaccharides, Nuclear Inst. Method. Phys. Res. B, 265 (2007) 429.
  • M. Şen, S. Rendevski, P. Akkaş Kavakli, A. Sepehrianazar, Effect of G/M ratio on the radiation induced degradation of sodium alginate. Radiat. Phys. Chem., 79 (2010) 279.
  • M. Şen, H. Atik, The antioxidant properties of oligo sodium alginates prepared by radiation-induced degradation in aqueous and hydrogen peroxide solutions. Radiat. Phys. Chem., 81 (2012) 816.
  • N.N. Duy, D.V. Phu, N.T. Anh, N.Q. Hien, Synergistic degradation to prepare oligochitosan by γ-irradiation of chitosan solution in the presence of hydrogen peroxide. Radiat. Phys. Chem., 80 (2012) 848.
  • N.M. El-Sawy, H.A. Abd El-Rehîm, A.M. Elbarbary, A. El-Sayed Hegazy, Radiation-induced degradation of chitosan for possible use as a growth promoter in agricultural purposes. Carbohyd. Polym., 79 (2010) 555
  • D.R. Picout, S.B. Ross-Murphy, K. Jumei, S.E. Harding, Pressure cell assisted solution characterization of polysaccharides. 2. locust bean gum and tara gum. Biomacromolecules, 3 (2002) 761.
  • B.M. Prado, S. Kim, B.F. Özen, L.J. Mauer, Differentia- tion of carbohydrate gums and mixtures using fourier transform infrared spectroscopy and chemometrics. J. Agric. Food Chem., 53 (2005) 2823.
  • Y. Cheng, K.M. Brown, R.K. Prud’Homme, Prepara- tion and characterization of molecular weight fractions of guar galactomannans using acid and enzymatic hydrolysis. Int. J. Biol. Macromol., 31 (2002) 29.
  • G.L. Cote, Low-viscosity a-D-glucan fractions derived from sucrose which are resistant to enzymatic digestion. Carbohyd. Polym., 19 (1992), 249.
  • Y. Cheng, K.M. Brown, R.K. Prud’Homme, Enzymatic Degradation of guar and substituted guar galacto- mannans. Biomacromolecules, 1 (2000), 782.
  • A. Tayal, S.A. Khan, Degradation of a water-soluble polymer: molecular weight changes and chain scission characteristics. Macromolecules, 33 (2000), 9488.
  • J.L. Willet, M.M. Millard, B.K. Jasberg, Extrusion of waxy maize starch: melt rheology and molecular weight degradation of amylopectin. Polymer, 38 (1997) 5983.
  • S.C. Szu, G. Zon, R. Schneerson, J. B. Robbins, Ultrasonic irradiation of bacterial polysaccharides. Characterization of the depolymerized products and some applications of the process. Carbohyd. Res., 152 (1986) 7.
  • T.T. Reddy, S. Tammishetti, Free radical degradation of guar gum, Polym. Deg. Stability, 86 (2004) 455.
  • K. Jumel, S.E. Harding, J.R. Mitchell, Effect of gamma irradiation on the macromolecular integrity of guar gum. Carbohyd. Res., 282 (1996) 223.
  • O. Güven, M. Şen, F. Yiğit, The contribution of associogenic end groups in the radiation cross- linking of poly(ethyleneglycol). J. Polym. Sci. Polym. Chem., 32 (1992) 2055.
  • A. Charlesby, Atomic Radiation and Polymers Pergamon Press, New York 1960.
  • H.H.G. Jellinek, Degradation of vinyl polymers, New York: Wiley and Sons, 1955.
  • T. Østberg, E.M. Lund, C. Graffner, Calcium alginate matrices for oral unit administration. IV. Release characteristics in different media. Int. J. Pharma., 112 (1994) 241.
  • A.M. Garcia, E.S. Ghaly, Preliminary spherical agglomerates of water soluble drug using natural polymer and cross-linked technique. J. Control. Release, 40 (1996) 179.
  • G.T. Grant, E.R. Morris, D.A. Rees, P.J.C. Smith, D. Thom, Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Letters, 32 (1973) 195.
  • O. Smidsrod, Molecular basis for some physical properties of alginates in gel state. J. Chem. Soc., Faraday Transact. 57 (1974) 263.
  • G. Klock, H. Frank, R. Houben, T. Zekorn, A. Horcher, U. Siebers, M. Wohrle, K. Federlin, U. Zimmermann, Production of purified alginates suitable for use in immunoisolated transplantation. Appl. Microbiol. Biotechnol., 40 (1994) 638.
  • O. Smidsrod, R.M. Glover, S.G. Whittington, The relative extension of alginates having different chemical composition. Carbohyd. Res., 27 (1973) 107.
  • N.N. Duy, D.V. Phu, N.T. Anh, N.Q. Hien, Synergistic degradation to prepare oligochitosan by g-irradiation of chitosan solution in the presence of hydrogen peroxide. Radiat. Phys. Chem., 80 (2011) 848.
  • B. Kang, Y. D. Dai, H. Q. Zhang, D. Chen, Synergetic degradation of chitosan with gamma radiation and hydrogen peroxide. Polym. Degrad. Stability, 92 (2007) 359.
  • N.M. El-Sawy, H. A. Abd El-Rehim, A. M. Elbarbary, E.S. A. Hegazy, Radiation-induced degradation of chitosan for possible use as a growth promoter in agricultural purposes. Carbohyd. Polym., 79 (2010) 555.
  • L. Huang, M. Zhai, J. Peng, J. Li, G. Wei, Radiation- induced degradation of carboxy methylated chitosan in aqueous solution. Carbohyd. Polym., 67 (2007) 305.
  • P. Ulanski, C.V. Sonntag, OH-Radical-induced chain scission of chitosan in the absence and presence of dioxygen. J. Chem. Soc., Perkin Trans., 2 (2000) 2022.
  • I. Janik, E. Kasprzak, A. Al-Zier, J. M. Rosiak, Radiation crosslinking and scission parameters for poly(vinyl methyl ether) in aqueous solution. Nuclear Inst. Method Phys. Res. B, 208 (2003) 374.
  • G.O. Phillips, P.A. Williams, Handbook of hydrocolloids, Woodhead Publishing Series in Food Science, Technology and Nutrition No. 173, 2009.
  • P. Taşkın, H. Canısağ, M. Şen, The effect of degree of deacetylation on the radiation induced degradation of chitosan. Radiat. Phys. Chem., 94 (2014) 236.
Hacettepe Journal of Biology and Chemistry-Cover
  • ISSN: 2687-475X
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1972
  • Yayıncı: Hacettepe Üniversitesi, Fen Fakültesi