4-Vinil piridin aşılanmış Cu(II)-yüklenmiş polimerik ligand değiştiriciler kullanılarak sulu çözeltilerden As(V) uzaklaştırılması

As(V) uzaklaştırılmasında kullanılmak üzere polimerik ligand değiştirici (PLE) fiber adsorbent hazırlamak amacıyla, 4-vinil piridin (VP) monomeri radyasyonla başlatılan aşı polimerizasyonu (RIGP) tekniği kullanılarak, polietilen (PE/PP) ile kaplanmış polipropilen (PE/PP) dokumasız kumaşlar (NWF) üzerine emülsiyon ortamında aşılanmıştır. 4-vinil piridin aşılama koşulları optimize edilmiş ve yaklaşık % 150 VP aşılanan örnekler adsorpsiyon deneylerinde kullanılmıştır. As(V) uzaklaştırılması için uygun polimer ligand değiştirici (PLE) hazırlanması için, VP aşılanmış dokumasız kumaş fiberler Cu(II) iyonları ile yüklenmiştir. PLE’nin bakır yükleme kapasitesinin 0.5 mmol Cu(II)/g polimer olduğu belirlenmiştir. As(V) adsorpsiyon deneyleri, kesikli yöntemde farklı adsorpsiyon zamanı, pH (3-9) ve başlangıç As(V) konsantrasyonlarında gerçekleştirilmiştir. PLE adsorbent üzerine As(V) adsorpsiyonunun hızlı olduğu gözlenmiş ve adsorpsiyon dengesine 4 saat içinde ulaşılmıştır. Cu(II) yüklenmiş VP aşılanmış NWF tarafından adsorplanan As(V) miktarının geniş pH aralığında önemli bir değişiklik göstermediği tespit edilmiştir. PLE’nin adsorpsiyon davranışı üzerine başlangıç As(V) konsantrasyonunun etkisi, farklı As(V) konsantrasyonlarında (0.1-500 ppm) pH 7’de belirlenmiştir. Yeni PLE adsorbentinin, As(V) için yüksek afinite gösterdiği gözlenmiştir. Langmuir izoterminden maksimum adsorpsiyon kapasitesi, 51 mg As(V)/g PLE olduğu bulunmuştur. Langmuir izoterminden bulunan teorik adsorpsiyon kapasitesinin, 47 mg As(V)/g PLE olarak bulunan deneysel adsorpsiyon kapasitesi ile uyumlu olduğu bulunmuştur.

Removal of As(V) from aqueous solutions using Cu(II)-loaded 4-vinyl pyridine grafted polymeric ligand exchanger

In order to prepare fibrous polymeric ligand exchanger (PLE) adsorbent for the removal of As(V), 4-vinyl pyridine (VP) monomer was first grafted onto polyethylene/polypropylene nonwoven fabrics (NWF) made of polypropylene coated by polyethylene (PE/PP) in emulsion medium by using radiation induced graft polymerization (RIGP). 4-Vinyl pyridine grafting conditions were optimized and about 150% VP grafted samples were used for further experiments. For the preparation of the suitable polymer ligand exchanger (PLE) for the removal of As(V), VP grafted NWF were loaded with Cu(II) ions. Copper loading capacity of PLE was determined to be 0.5 mmol Cu(II)/g polymer. As(V) adsorption experiments were performed in batch mode at different contact time, pH (3-9) and initial As(V) concentrations. The As(V) adsorption rate onto PLE adsorbent was rapid and adsorption equilibrium was established within 4 hours. It was found that As(V) adsorption by Cu(II) loaded VP grafted NWF did not change significantly over a wide pH range. The effect of initial concentration of As(V) on the adsorption behaviour of PLE was determined for different As(V) concentrations (0.1-500 ppm) at pH 7. The new PLE showed high affinity for As(V), the maximum adsorption capacity was found to be 51 mg As(V)/g PLE from Langmuir isotherm. It was found that the theoretical capacity found from Langmuir isotherm is very good accordance with experimental capacity 47 mg As(V)/g PLE.

___

  • 1. V. Chandra, J. Park, Y. Chun, J.W. Lee, I-C. Hwang, KS Kim. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS NANO, 4 (2010) 3979.
  • 2. Z. Zhao, Y. Jia, L. Xu, S. Zhao, Adsorption and heterogeneous oxidation of As(III) on ferrihydrite, Water Res., 45 (2011) 6496.
  • 3. J.A. Munoz, A. Gonzalo, M. Valiente, Arsenic adsorption by Fe(III)-loaded open-celled cellulose sponge. Thermodynamic and selectivity aspects., Environ. Sci. Technol., 36 (2002) 3405.
  • 4. K. Tyrovola, N.P. Nikolaidis, N. Veranis, N. KallithrakasKontos, P.E. Koulouridakis, Arsenic removal from geothermal waters with zero-valent iron—Effect of temperature, phosphate and nitrate, Water Res., 40 (2006) 2375.
  • 5. F. Özmen, P.A. Kavaklı, O. Güven, Removal of phosphate by using copper-loaded poly(N-vinylimidazole) hydrogels as polymeric ligand exchanger. J. Appl. Polym. Sci., 119 (2011) 613.
  • 6. D. Zhao, A.K. SenGupta, Ligand separation with a copper(II)-loaded polymeric ligand exchange, Ind. Eng. Chem. Res., 39 (2000) 455.
  • 7. M. Chanda, K.F. O’Driscoll, G.L. Rempel, Ligand exchange sorption of arsenate and arsenite anions by chelating resins in ferric ion form: II. Iminodiacetic chelating resin Chelex 100, React. Polym., 8 (1988) 85.
  • 8. K. M. Popat, P.S. Anand, B.D. Dasore, Selective removal of fluoride ions from water by aluminium form of the aminomethyl phosphonic acid-type ion exchanger, React. Polym., 23 (1994) 23.
  • 9. M. J. Haron, W. M. Z. Wan Yunus, S. A. Wasay, A. Uchiumi, S. Tokunaga, Sorption of fluoride ions from aqueous solutions by a Yttrium-loaded poly(hydroxamic acid) resin, Int. J. Environ. Stud., 48 (1995) 245.
  • 10. M. Kanesato, T. Yokoyama, T. Suzuki, Selective sorption of fluoride ion by La(III)-loaded chelating resin having phosphonomethylamino groups, Chem. Lett., 17 (1988) 207.
  • 11. L. Dambies, E. Guibal, A. Roze, As(V) sorption on molybdate impregnated chitosan beads, Colloid. Surface. A, 170 (2000) 19.
  • 12. T. Balaji, H. Matsunaga, Adsorption characteristics of As(III) and As(V) with titanium dioxide loaded Amberlite XAD-7 resin, Anal. Sci., 18 (2002) 1345.
  • 13. M.R. Awual, A.S. El-Safty, A. Jyo, Removal of trace arsenic(V) and phosphate from water by a highly selective ligand exchange adsorbent, J. Environ. Sci., 23 (2011) 1947.
  • 14. I. Yoshida, K. Ueno, Separation of Arsenic(III) and (V) ions with ferric complex of chelating ion-exchange resin. Sep. Sci. Technol., 13 (1978) 173.
  • 15. H. Matsunaga, T. Yokoyama, R.J. Eldridge, B.A. Bolto, Adsorption characteristics of arsenic(III) and arsenic(V) on iron(III)-loaded chelating resin having lysine-Nα,Nα-diacetic acid moiety, React. Polym., 29 (1996) 167.
  • 16. M. Chanda, K.F. O’Driscoll, G.L. Rempel, G.L. Ligand exchange sorption of arsenate and arsenite anions by chelating resins in ferric ion form. II. Iminodiacetic chelating resin chelex 100. React Polym., 8 (1988) 85.
  • 17. I. Rau, A. Gonxalo, M. Valiente, Arsenic(V) removal from aqueous solutions by iron(III) loaded chelating resins, J. Radioanal. Nucl. Chem., 246 (2000) 597.
  • 18. M.J. Haron, W.M.Z. Wan Yunus, N.L. Yong, S. Tokunaga, Sorption of arsenate and arsenite anions by Iron(III)- poly(hydroxamic acid) complex. Chemosphere, 39 (1999) 2459.
  • 19. M. Chanda, K.F. O’Driscoll, G.L. Rempel, Ligand exchange sorption of arsenate and arsenite anions by chelating resins in ferric ion form. I. Weak-base chelating resin Dow XFS-4195. React. Polym., 7 (1988) 251.
  • 20. J.H. Min, J.G. Hering, Arsenate sorption by Fe(III)- doped alginate gels. Water Res., 32 (1998) 1544.
  • 21. A. Ramana, A.K. Sengupta, Removing selenium(IV) and arsenic(V) oxyanions with tailored chelating polymers, J. Environ. Eng., 118 (1992) 755.
  • 22. W. Tao , A. Li , C. Long, Z. Fan , W. Wang , Preparation, characterization and application of a copper(II)-bound polymeric ligand exchanger for selective removal of arsenate from water. J. Hazard. Mater., 193 (2011) 49.
  • 23. T.M. Suzuki, J.O. Bomani, H. Matsugana, T. Yokoyama, Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic, React. Funct. Polym., 43 (2000) 165.
  • 24. T. Balaji, T. Yokoyama, Matsunaga, Hideyuki, Adsorption and removal of As(V) and As(III) using Zr-loaded lysine diacetic acid chelating resin, Chemosphere, 59 (2005) 1169.
  • 25. N. Seko, F. Basuki, M. Tamada, F.Yoshii, Rapid removal of arsenic(V) by zirconium(IV) loaded phosphoric chelate adsorbent synthesized by radiation induced graft polymerization, React. Funct. Polym., 59 (2004) 235.
  • 26. X. Zhu, A. Jyo, Removal of arsenic (V) by zirconium (IV)-loaded phosphoric acid chelating resin, Sep. Sci. Technol., 36 (2001) 3175.
  • 27. A. Yuchi, T. Sato, Y. Morimoto, H. Mizuno, H. Wada, Adsorption mechanism of trivalent metal ıons on chelating resins containing ıminodiacetic acid groups with reference to selectivity, Anal. Chem., 69 (1997) 2941.
  • 28. D.Q. Trung, C.X. Anh, N.X. Trung, Y. Yasaka, M. Fujita, M. Tanaka, Preconcentration of arsenic species in environmental waters by solid phase extraction using metal-loaded chelating resins. Anal. Sci., 17 (2001) 1219.
  • 29. M.J. Haron , M.Z.W. Yunus , M.A. Sukari , L.T. Wum, S. Tokugana. Removal of arsenic(V) by cerium(III) complexed chelating ion exchanger. Malays. J. Anal. Sci., 3 (1997) 193.
  • 30. M.J. Haron, and L.L. Shiah, and W.M.Z. Wan Yunus, Sorption of Arsenic (V) by Titanium Oxide Loaded Poly(Hydroxamic Acid) Resin. Malaysian J. Anal. Sci., 10 (2006) 261.
  • 31. T. Balaji, H. Matsunaga, Adsorption characteristics of As(III) and As(V) with titanium dioxide loaded Amberlite XAD-7 resin. Anal Sci., 18 (2002) 1345.
  • 32. L. Dambies, E. Guibal, and A. Roze , As(V) sorption on molybdate-impregnated chitosan beads. Colloid. Surface. A , 170 (1) (2000) 19 .
  • 33. S. Rijith, T.S. Anirudhan, T. Shripathi, Evaluation of Iron(III) Chelated Polymer Grafted Lignocellulosics for Arsenic(V) Adsorption in a Batch Reactor System. Ind. Eng. Chem. Res., 51 (2012) 10682.
  • 34. P. Akkaş Kavaklı, C. Kavaklı, Quaternized vinyl pyridine strong base anion exchange fibers for As(V) adsorption, Water Research, (2014) submitted.
  • 35. S. Lagergren, About the theory of so-called adsorption of solute substances, Kungliga Svenska Vetensk. Handl., 24 (1898) 1.
  • 36. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process. Biochem., 34 (1999) 451.
  • 37. C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in Adsorption. Part XI.* A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc., 786 (1960) 3973.
  • 38. H. Matsunaga, T. Yokoyama, R. J. Eldridge, B.A. Bolto, Adsorption characteristics of arsenic(III) and arsenic(V) on iron(III)-loaded chelating resin having lysine-Na,Na-diacetic acid moiety, React. Funct. Polym., 29 (1996) 167.
  • 39. T. Balaji, T. Yokoyama, H. Matsunaga, Adsorption and Removal of As(V) ve As(III) using Zr-loaded Lysine Diacetic Acid Chelating Resin, Chemosphere, 59 (2005) 1169.
  • 40. I. Rau, A. Gonzala, M. Valiente, Arsenic(V) removal from aqueous solutions by iron (III) loaded chelating resin, J. Radioanal. Nucl. Chem., 246 (2000) 597.
  • 41. A. Ramana, A.K. SenGupta, Removing selenium(IV) and arsenic(V) oxyanions with tailored chelating polymers, J. Environ. Eng., 118 (1992) 755..
Hacettepe Journal of Biology and Chemistry-Cover
  • ISSN: 2687-475X
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1972
  • Yayıncı: Hacettepe Üniversitesi, Fen Fakültesi