Sulu Çözeltilerden Cu(II) ve Co(II) Uzaklaştırılması için Yeni bir Hibrit Materyal

Bu çalışmada, çok duvarlı karbon nanotüp (MWCNT) temelli yeni hybrid material sentezlenmiştir. Sentezlenen hybrid materyal sulu ortamdan Cu(II) ve Co(II) uzaklaştımak için adsorbent olarak kullanılmıştır. Hibrid materyal üç aşamada sentezlenmiştir. Birinci aşamada Hummer metodu kullanılarak çok duvarlı karbon nanotüp okside (MWCNT-O) edilmiştir. Sonraki aşamada okside edilen karbon nanotüp 3-aminopropiltrietoksisilan ile muamele edilerek serbet -NH2 gruplarına sahip silanlanmış karbon nanotüp elde edilmiştir. Son aşamada ise silanlanmış karbon nanotüp 3,5-diklorosalisilaldehit ile tepkimesinden hybrid malzeme elde edilmiştir. Sentezlenen hybrid malzeme analtik ve spektroskopik yöntemlerle karakterize edilmiştir (FT-IR, Uv-vis, TGA, Raman, SEM, TEM, EDX ve XRD çalışmaları ile). Hibrid malzeme sulu ortamdan Cu(II) veya Co(II) iyonlarının uzaklaştı- rılmasında adsorbent olarak kullanılmıştır. Hibrid malzemenin adsorpsiyon kapasitesi üzerine pH, temas süresi, başlangıç konsantrasyon ve sıcaklık parametreleri incelenmiştir.

A New Hybrid Material for the Removal of Cu(II) and Co(II) Ions from Aqueous Solutions

In this study, a new multi-walled carbon nanotube(MWCNT) based hybrid material was obtained and used as adsorbent for the removal of Cu(II) and Co(II) from aqueous solutions. In the synthesis, firstly, the surface of MWCNT was modified via Hummer method to give oxidized MWCNT-O. In the following step, the oxidized MWCNT was treated with 3-aminopropyl triethoxysilane (APTES) to give a silanized form of MWCNT having free amine end groups. Finally, the silanized MWCNT was reacted with 3, 5-dichlorosalicylaldehyde to give the hybrid material. The new hybrid material was characterized by analytical and spectroscopic methods (FT-IR, UV-Vis., TGA, Raman Spectra, SEM, TEM, EDX and XRD studies). The hybrid material was used as adsorbent for the removal of Cu(II) and Co(II) ions from aqueous solutions. The effects of adsorption parameters such as pH, contact time, temperature, and initial concentrations on adsorption behaviors were investigated.

___

  • S.Yang, J.Li, D.Shao, J. Hu, and X.Wang, Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA, Journal of hazardous materials, 166 1 (2009) 109-116.
  • J. Zhang, P. Yedlapalli, and J.W. Lee, Thermodynamic analysis of hydrate-based pre-combustion capture of CO2 , Chemical Engineering Science, 64 22 (2009) 4732-4736.
  • 42. T.A. Saleh, The role of carbon nanotubes in enhancement of photocatalysis. Syntheses and Applications of Carbon Nanotubes and Their Composites (2013) doi: 10.5772/51050.
  • B. Sharma, R. Chhibber, and R. Mehta, Effect of surface treatment of nanoclay on the mechanical properties of epoxy/glass fiber/clay nanocomposites, Composite Interfaces, 23 7 (2016) 623-640.
  • V.K. Gupta, S. Agarwal, and T.A. Saleh, Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water research, 45 6 (2011) 2207-2212.
  • J.Y. Kim, and S.H. Kim, Influence of multiwall carbon nanotube on physical properties of poly (ethylene 2, 6‐naphthalate) nanocomposites, Journal of Polymer Science Part B: Polymer Physics, 44 7 (2006) 1062- 1071
  • D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M.S. Meier, and J.P. Selegue, Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry, Nano Letters, 2 6 (2002) 615-619.
  • L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, and J. Judek, Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods, Journal of Alloys and Compounds, 501 1 (2010) 77-84.
  • I.D. Rosca, F. Watari, M. Uo, and T. Akasaka, Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon, 43 15 (2005) 3124-3131.
  • K.T. Shalumon, K.H. Anulekha, C.M. Girish, R. Prasanth, S.V. Nair, and R. Jayakumar, Single step electrospinning of chitosan/poly (caprolactone) nanofibers using formic acid/acetone solvent mixture, Carbohydrate Polymers, 80 2 (2010) 413-419.
  • J.S. Santos, L.S. Teixeira, W.N. Dos Santos, V.A. Lemos, J.M. Godoy, and S.L. Ferreira, Uranium determination using atomic spectrometric techniques: an overview, Analytica chimica acta, 674 2 (2010) 143-156.
  • F.V. Ferreira, L. Cividanes, F.S. Brito, B.R.C. de Menezes, W. Franceschi, E.A.N. Simonetti, and G.P. Thim, Functionalizing Graphene and Carbon Nanotubes A Review, Springer.(2016) ISSN: 2191-530X
  • C.G. Salzmann, S.A. Llewellyn, G. Tobias, M.A. Ward, Y. Huh, and M.L. Green, The Role of Carboxylated Carbonaceous Fragments in the Functionalization and Spectroscopy of a Single‐Walled Carbon‐Nanotube Material, Advanced Materials, 19 6 (2007) 883-887.
  • O. Eren, N. Ucar, A. Onen, N. Kızıldag, O.F. Vurur, N. Demirsoy, and I. Karacan, Effect of aminefunctionalized carbon nanotubes on the properties of CNT-PAN composite nanofibers. Int. J. Chem. Nuclear Metallurgical Mater Eng., 8(8) (2014) 726-8.
  • J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, and R.C. Haddon, Solution properties of singlewalled carbon nanotubes, Science, 282 5386 (1998) 95-98.
  • D.S. Bag, R. Dubey, N. Zhang, J. Xie, V.K. Varadan, D. Lal, and G.N. Mathur,. Chemical functionalization of carbon nanotubes with 3-methacryloxypropyltrimethoxysilane (3-MPTS), Smart materials and structures, 13 5 (2004) 1263.
  • C. Velasco-Santos, A.L. Martinez-Hernandez, M. Lozada-Cassou, A. Alvarez-Castillo, and V.M. Castano, Chemical functionalization of carbon nanotubes through an organosilane, Nanotechnology, 13 4 (2002) 495.
  • H. Gaspar, C. Pereira, S.L.H. Rebelo, M.F.R. Pereira, J.L. Figueiredo, and C. Freire,. Understanding the silylation reaction of multi-walled carbon nanotubes, Carbon, 49 11 (2011) 3441-3453.
  • 26. C. Velasco-Santos, A.L. Martinez-Hernandez, W. Brostow, and V.M. Castano, Influence of silanization treatment on thermomechanical properties of multiwalled carbon nanotubes: poly (methylmethacrylate) nanocomposites.  Journal of Nanomaterials, (2011), doi:10.115/2011/928659
  • M. Aizawa, and M.S. Shaffer,Silylation of multi-walled carbon nanotubes, Chemical physics letters, 368 1 (2003) 121-124.
  • P.C. Ma, J.K. Kim, and B.Z. Tang, Functionalization of carbon nanotubes using a silanecoupling agent, Carbon, 44 15 (2006)3232-3238.
  • Z. Zhao, Z. Yang, Y. Hu, J. Li, and X. Fan, Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups, Applied surface science, 276 (2013) 476-481.
  • G. Ovejero, J.L. Sotelo, M.D. Romero, A. Rodríguez, M.A. Ocana, G. Rodríguez, and J. Garcia, Multiwalled Carbon Nanotubes for Liquid-Phase Oxidation. Functionalization, Characterization, and Catalytic Activity, Ind. Eng. Chem. Res., 45  7 (2006)2206–2212.
  • C. Zhao, L. Ji, H. Liu, G. Hu, S. Zhang, M. Yang, and Z.Yang, Functionalized carbon nanotubes containing isocyanate groups, Journal of Solid State Chemistry, 177 12 (2004) 4394-4398.
  • L.H. Teng, IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers, Journal of Zhejiang University science A, 9 5 (2008) 720-726.
  • C. Lu, C. Liu, and G. P.Rao, Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon, Journal of hazardous materials, 151 1 (2008) 239-246.
  • F. Avilés, J.V. Cauich-Rodríguez, L.Moo-Tah, A. MayPat, and R. Vargas-Coronado, Evaluation of mild acid oxidation treatments for MWCNT functionalization, Carbon, 47 13 (2009) 2970-2975.
  • W.M. Davis, C.L. Erickson, C.T. Johnston, J.J. Delfino, and J.E. Porter, Quantitative Fourier Transform Infrared spectroscopic investigation humic substance functional group composition, Chemosphere, 38 12 (1999) 2913-2928.
  • J.Y. Xu, K. Han, S.X. Li , J.S,. Cheng, G.T. Xu, W.X. Li and Q.N. Li, Pulmonary responses to polyhydroxylatedfullerenols, C60(OH)x, Journal of Applied Toxicology, 29 7 (2009) 578-584.
  • C. Chen, and X. Wang, Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes, Industrial & Engineering Chemistry Research, 45 26 (2006) 9144-9149.
  • Z. Luo, and A.T. Johnson, High yield preparation of macroscopic graphene oxide membranes,.Journal of the American Chemical Society 131 3, 898-899
  • J. Kathi, and K.Y. Rhee, Surface modification of multi-walled carbon nanotubes using 3-aminopropyl triethoxysilane, Journal of Materials Science, 43 1 (2008)33-37.
  • J.W.S. Hummers and R.E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society, 80(6) (1958) 1339-1339.
  • W.Li, M.R. Probert,M.Kosa, T.D. Bennett, A. Thirumurugan, R.P. Burwood, M. Parinello, J.A. Howard and A.K. Cheetham, Negative linear compressibility of a metal–organic framework, Journal of the American Chemical Society, 134 29 (2012)11940-11943.
  • J.O. Duruibe, M.O. COgwuegbu, and J.N. Egwurugwu, Heavy metal pollution and human biotoxic effects, International Journal of Physical Sciences, 2 5 (2007) 112-118.
  • I.W. Donald, Waste immobilization in glass and ceramic based hosts: radioactive, toxic and hazardous wastes, John Wiley & Sons.(2010).
  • D.W. Johnson, and R.T.Johnson, Cooperative learning. Blackwell Publishing Ltd.(2008).
  • J.E. Fergusson, Heavy elements: chemistry, environmental impact and health effects,Pergamon (1990).
  • M. Cempel, and G. Nikel, Nickel: A review of its sources and environmental toxicology, Polish Journal of Environmental Studies, 15 3 (2006) 375-382.
  • D.K.V. Ramana, K. Jamuna, B. Satyanarayana, B. Venkateswarlu, M.M. Rao and K. Seshaiah, Removal of heavy metals from aqueous solutions using activated carbon prepared from Cicer arietinum, Toxicological and Environ Chemistry, 92 8 (2010) 1447-1460.
  • T. Satyanarayana, B.N. Johri and A. Prakash eds., Microorganisms in environmental management: microbes and environment. Springer Science & Business Media 21 2012 818-820.
  • L. West, World water day: a billion people worldwide lack safe drinking water. URL: environment. (2006).
  • D.H. Pink, Investing in tomorrow’s liquid gold. April 19, (2006).
  • R.M. Harrison, Effects and control. Royal Society of Chemistry, Pollution: causes (2001).