Organo-Fonksiyonel Silan ile Modifiye Edilmiş ITO Elektrot Temelli CDH 22 Biyobelirteç Tespiti için Hassas ve Etiketsiz Bir Elektrokimyasal İmpedans İmmünosensörü

Bu çalışmada, anti-CDH 22 antikoru ve CDH 22 antijeni arasındaki spesifik immüno-reaksiyona dayanan, kadherin benzeri protein (CDH 22) biyobelirtecinin tespiti için yeni bir elektrokimyasal etiketsiz immünosensör üretilmiştir. Geliştirilen immünosensör, anti-CDH 22 antikorlarının 3-siyanopropiltrimetoksisilan (CPTMS) ile modifiye edilmiş ITO substratı üzerinde immobilizasyonu ile oluşturulmuştur. Anti-CDH 22 antikorlarının CPTMS silanizasyon ajanına etkili bağlanması, morfolojik karakterizasyon (Taramalı Elektron Mikroskobu (SEM), Atomik Kuvvet Mikroskobu (AFM)) ve elektrokimyasal karakterizasyon (Elektrokimyasal İmpedans Spektroskopisi (EIS), Siklik Voltammetri (CV) kullanılarak incelendi. Optimum deney koşulları altında, ITO / CPTMS ile modifiye edilmiş elektrot, anti-CDH 22 antikor bağlanması için iyi bir bağlayıcıydır. Ek olarak, CPTMS modifiye elektrot CDH 22 antijen tespiti için etkili bir yüzey sunmuştur. İmmünosensör, geniş bir lineer tespit aralığı (0.03-3 pg/mL) ile düşük tespit limiti (9 fg/mL) ile sahipti. Ayrıca, iyi tekrarlanabilirlik, mükemmel tekrarlanabilirlik ve uzun depolama kararlılığına sahipti. Ek olarak, önerilen immünosensörün pratik uygulanabilirliği, insan serum numuneleri kullanılarak araştırıldı. İnsan serum numuneleri geri kazanım sonuçları (% 99.16 -% 101.94) önerilen biyosensörün doğruluğunu göstermektedir. Sonuç olarak, CPTMS, biyosensör yapımı için umut verici bir platform olabilir ve bu önerilen immünosensör gerçek insan serum analizi için uygulanabilir.

A Sensitive and Label-Free Electrochemical Impedance Immunosensor for CDH 22 Biomarker Detection Based on Organo-Functional Silane Modified ITO Electrode

In this work, a novel electrochemical label free immunosensor was fabricated for Cadherin-like protein 22 (CDH 22) biomarker detection based on specific immunoreaction between anti-CDH 22 antibody and CDH 22 antigen. The developedimmunosensor was constructed through the immobilization of anti-CDH 22 antibodies on 3-cyanopropyltrimethoxysilane (CPTMS) modified ITO substrate. The effective binding of the anti-CDH 22 antibodies on the CPTMS silanization agentwas investigated by using morphological characterization (Scanning Electron Microscopy (SEM), Atomic Force Microscopy(AFM)) and electrochemical characterization (Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV)).Under optimum experimental conditions, the ITO/CPTMS modified electrode was a good linker for anti-CDH 22 antibodyanchoring. In addition, CPTMS modified electrode offered an efficient surface to CDH 22 antigen detection. The immunosensor had a wide linear detection range (0.03-3 pg/mL) with low detection limit (9 fg/mL). Also, it had good reproducibility,excellent repeatability and long storage stability. In addition, the practical applicability of the proposed immunosensor wasinvestigated by utilizing human serum samples. The human serum samples recovery results (99.16% - 101.94%) illustratedthe accuracy of the suggested biosensor. Consequently, CPTMS can be a promising platform for biosensor construction andthis suggested immunosensor can be applicable for real human serum analysis.

___

  • 1. J. Duraiyan, R. Govindarajan, K. Kaliyappan, M. Palanisamy, Applications of immunohistochemistry, J. Pharm. BioAllied Sci., 4 (2012) S307.
  • 2. D. Shin, N. Vigneswaran, A. Gillenwater, R. Richards-Kortum, Advances in fluorescence imaging techniques to detect oral cancer and its precursors, Future Oncol., 6 (2010) 1143- 1154.
  • 3. A. Gündoğdu, E.B. Aydın, M.K. Sezgintürk, A novel electrochemical immunosensor based on ITO modified by carboxyl-ended silane agent for ultrasensitive detection of MAGE-1 in human serum, Anal. Biochem., 537 (2017) 84-92.
  • 4. E.B. Aydın, M. Aydın, M.K. Sezgintürk, Highly sensitive electrochemical immunosensor based on polythiophene polymer with densely populated carboxyl groups as immobilization matrix for detection of interleukin 1β in human serum and saliva, Sens. Actuator. B, 270 (2018) 18-27.
  • 5. E.B. Aydın, M. Aydın, M.K. Sezgintürk, Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection, Biosen. Bioelectron., 121 (2018) 80-89.
  • 6. J. Zhou, J. Li, J. Chen, Y. Liu, W. Gao, Y. Ding, Over-expression of CDH22 is associated with tumor progression in colorectal cancer, Tumor Biol., 30 (2009) 130-140.
  • 7. E. Martín-Sánchez, S. Mendaza, A. Ulazia-Garmendia, I. Monreal-Santesteban, A. Córdoba, F. Vicente-García, I. Blanco-Luquin, S. De La Cruz, A. Aramendia, D. GuerreroSetas, CDH22 hypermethylation is an independent prognostic biomarker in breast cancer, Clin. Epigenet., 9 (2017) 7.
  • 8. B. Piche, S. Khosravi, M. Martinka, V. Ho, G. Li, CDH22 expression is reduced in metastatic melanoma, Am. J. Cancer Res., 1 (2011) 233.
  • 9. M. Aydın, E.B. Aydın, M.K. Sezgintürk, Electrochemical immunosensor for CDH22 biomarker based on benzaldehyde substituted poly (phosphazene) modified disposable ITO electrode: A new fabrication strategy for biosensors, Biosens. Bioelectron., 126 (2019) 230-239.
  • 10. X.R. Cheng, B.Y. Hau, T. Endo, K. Kerman, Au nanoparticlemodified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance, Biosens. Bioelectron., 53 (2014) 513-518.
  • 11. E.B. Aydın, M.K. Sezgintürk, Indium Tin Oxide (ITO): A promising material in biosensing technology, TrAC, Trends Anal. Chem., 97 (2017) 309-315.
  • 12. C.M. Pandey, S. Dewan, S. Chawla, B.K. Yadav, G. Sumana, B.D. Malhotra, Controlled deposition of functionalized silica coated zinc oxide nano-assemblies at the air/water interface for blood cancer detection, Anal. Chim. Acta, 937 (2016) 29-38.
  • 13. S. Kumar, S. Kumar, S. Tiwari, S. Augustine, S. Srivastava, B.K. Yadav, B.D. Malhotra, Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection, Sens. Actuators, B, 235 (2016) 1-10.
  • 14. I. Tiwari, M. Singh, C.M. Pandey, G. Sumana, Electrochemical genosensor based on graphene oxide modified iron oxide– chitosan hybrid nanocomposite for pathogen detection, Sens. Actuators, B, 206 (2015) 276-283.
  • 15. A. Sharma, D. Baral, H. Bohidar, P.R. Solanki, Oxalic acid capped iron oxide nanorods as a sensing platform, Chem.- Biol. Interact., 238 (2015) 129-137.
  • 16. A. Singh, M. Choudhary, M. Singh, H. Verma, S.P. Singh, K. Arora, DNA functionalized direct electro-deposited gold nanoaggregates for efficient detection of Salmonella typhi, Bioelectrochemistry, 105 (2015) 7-15.
  • 17. A.K. Yagati, J.C. Pyun, J. Min, S. Cho, Label-free and direct detection of C-reactive protein using reduced graphene oxide-nanoparticle hybrid impedimetric sensor, Bioelectrochemistry, 107 (2016) 37-44.
  • 18. L. Yang, Y. Li, AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium–tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157: H7, Biosens. Bioelectron., 20 (2005) 1407-1416.
  • 19. M.B. dos Santos, S. Azevedo, J. Agusil, B. Prieto-Simon, C. Sporer, E. Torrents, A. Juárez, V. Teixeira, J. Samitier, Labelfree ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria, Bioelectrochemistry, 101 (2015) 146-152.
  • 20. E.B. Aydın, M. Aydın, M.K. Sezgintürk, A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples, Biosens. Bioelectron., 97 (2017) 169-176.
  • 21. S. Komathi, A.I. Gopalan, K.P. Lee, Fabrication of a novel layer-by-layer film based glucose biosensor with compact arrangement of multi-components and glucose oxidase, Biosens. Bioelectron., 24 (2009) 3131-3134.
  • 22. W. Chu, Q. Zhou, S. Li, W. Zhao, N. Li, J. Zheng, Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film, Appl. Surf. Sci., 353 (2015) 425-432.
  • 23. N. Prabhakar, Z. Matharu, B. Malhotra, Polyaniline Langmuir– Blodgett film based aptasensor for ochratoxin A detection, Biosens. Bioelectron., 26 (2011) 4006-4011.
  • 24. M. Ozmen, K. Can, M. Ersoz, Immobilization of albumin on indium-tin oxide (ITO) surface via isocyanate linkage, J. Electroanal. Chem., 633 (2009) 228-234.
  • 25. M.Ç. Canbaz, M.K. Sezgintürk, Fabrication of a highly sensitive disposable immunosensor based on indium tin oxide substrates for cancer biomarker detection, Anal. Biochem., 446 (2014) 9-18.
  • 26. M. Khan, X. Liu, J. Zhu, F. Ma, W. Hu, X. Liu, Electrochemical detection of tyramine with ITO/APTES/ErGO electrode and its application in real sample analysis, Biosens. Bioelectron., 108 (2018) 76-81.
  • 27. M.Z.H. Khan, Effect of ITO surface properties on SAM modification: A review toward biosensor application, Cogent Engineering, 3 (2016) 1170097.
  • 28. H. Törer, E.B. Aydın, M.K. Sezgintürk, A label-free electrochemical biosensor for direct detection of RACK 1 by using disposable, low-cost and reproducible ITO based electrode, Anal. Chim. Acta, 1024 (2018) 65-72.
  • 29. D. Guo, M. Zhuo, X. Zhang, C. Xu, J. Jiang, F. Gao, Q. Wan, Q. Li, T. Wang, Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1, Anal. Chim. Acta, 773 (2013) 83-88.
  • 30. A.K. Yagati, T. Lee, J. Min, J.-W. Choi, Electrochemical performance of gold nanoparticle–cytochrome c hybrid interface for H2 O2 detection, Colloids Surf. B, 92 (2012) 161- 167.
  • 31. E. Bahadır, M. Sezgintürk, Label-free, ITO-based immunosensor for the detection of a cancer biomarker: Receptor for Activated C Kinase 1, Analyst, 141 (2016) 5618- 5626.
  • 32. E.B. Aydın, M.K. Sezgintürk, A sensitive and disposable electrochemical immunosensor for detection of SOX2, a biomarker of cancer, Talanta, 172 (2017) 162-170.
  • 33. M.N.S. Karaboğa, M.K. Sezgintürk, A novel silanization agent based single used biosensing system: Detection of C-reactive protein as a potential Alzheimer’s disease blood biomarker, J. Pharm. Biomed. Anal., 154 (2018) 227-235.
  • 34. C. Haensch, S. Hoeppener, U.S. Schubert, Chemical modification of self-assembled silane based monolayers by surface reactions, Chem. Soc. Rev., 39 (2010) 2323-2334.
  • 35. J. Muñoz, R. Montes, M. Baeza, Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and biosensing, TrAC, Trends Anal. Chem., 97 (2017) 201-215.
  • 36. E.B. Aydın, M.K. Sezgintürk, A disposable and ultrasensitive ITO based biosensor modified by 6-phosphonohexanoic acid for electrochemical sensing of IL-1β in human serum and saliva, Anal. Chim. Acta, 1039 (2018) 41-50.
  • 37. M. Aydın, E.B. Aydın, M.K. Sezgintürk, A Disposable Immunosensor Using ITO Based Electrode Modified by a Star-Shaped Polymer for Analysis of Tumor Suppressor Protein p53 In Human Serum, Biosens. Bioelectron., 107 (2018) 1-9.
  • 38. X.Y. Zhang, L.Y. Zhou, H.Q. Luo, N.B. Li, A sensitive and labelfree impedimetric biosensor based on an adjunct probe, Anal. Chim. Acta, 776 (2013) 11-16.
  • 39. M. Labib, S. Martić, P.O. Shipman, H.B. Kraatz, Electrochemical analysis of HIV-1 reverse transcriptase serum level: Exploiting protein binding to a functionalized nanostructured surface, Talanta, 85 (2011) 770-778.
  • 40. A.S. Bandarenka, Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy, Analyst, 138 (2013) 5540-5554.
  • 41. M. Labib, P.O. Shipman, S. Martić, H.B. Kraatz, Towards an early diagnosis of HIV infection: an electrochemical approach for detection ofHIV-1 reverse transcriptase enzyme, Analyst, 136 (2011) 708-715.
  • 42. M. Behpour, S.M. Ghoreishi, E. Honarmand, M. SalavatiNiasari, Comparative electrochemical study of new selfassembled monolayers of 2-{[(Z)-1-(3-furyl) methylidene] amino}-1-benzenethiol and 2-{[(2-sulfanylphenyl) imino] methyl} phenol for determination of dopamine in the presence of high concentration of ascorbic acid and uric acid, Analyst, 136 (2011) 1979-1986.
  • 43. S. Wang, Y. Zhang, J. Yu, X. Song, S. Ge, M. Yan, Application of indium tin oxide device in gold-coated magnetic iron solid support enhanced electrochemiluminescent immunosensor for determination of carcinoma embryonic antigen, Sens. Actuators B, 171-172 (2012) 891-898.
  • 44. L. Alfonta, A. Bardea, O. Khersonsky, E. Katz, I. Willner, Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors, Biosens. Bioelectron., 16 (2001) 675-687.
  • 45. Y. Huang, M.C. Bell, I.I. Suni, Impedance biosensor for peanut protein Ara h 1, Anal. Chem., 80 (2008) 9157-9161.