Modified Graphite Surfaces Prepared for Electrochemical Biomolecular Interaction Detection Studies

Bu çalışma, çift sarmal DNA (dsDNA) ile önemli ve sık kullanılan bir antikanser ilacı olan Mitomisin C (MMC) arasındaki biyomoleküler etkileşimin görüntülenmesi için elektroaktif polimer modifiye elektrot malzemelerinin hazırlanmasını göstermektedir. Modifiye elektrot malzemeleri, o-fenilendiamin (oPD) monomerinin nanomalzeme içeren bir çözeltide elektropolimerizasyonu ile oluşturulmuştur. Katkı maddesi (dopant) molekül olarak kullanılan nanomalzeme grafen (GN)’dir ve elektropolimerizasyon tekniği dönüşümlü voltametri (CV)’dir. Sonrasında poli(o-fenilendiamin) polimer modifiye yüzeylere dsDNA immobilizasyonu gerçekleştirilmiştir. Oluşturulan nanomalzeme katılmış bu polimer modifiye elektrotlar, dsDNA-MMC etkileşiminin tespitinde biyotayin platformları olarak kullanılmışlardır. Biyomoleküler etkileşimlerini aydınlatmak için farklı MMC etkileşim süreleri çalışılmıştır.

___

  • 1. J. Wang, Nanoparticle-based electrochemical DNA detection, Anal. Chim. Acta, 500 (2003) 247-257.
  • 2. E.M. Boon, J.K. Barton, DNA electrochemistry as a probe of base pair stacking in A-, B-, and Z-form DNA, Bioconjugate Chem., 14 (2003) 1140-1147.
  • 3. J. Wang, G. Liu, A. Merkoçi, Electrochemical coding technology for simultaneous detection of multiple DNA targets, J. Am. Chem. Soc., 125 (2003) 3214-3215.
  • 4. Q. Gong, Y. Wang, H. Yang, A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film, Biosens. Bioelectron., 89 (2017) 565-569.
  • 5. F. Kuralay, N. Dükar, Y. Bayramlı, Poly-L-lysine coated surfaces for ultrasensitive nucleic acid detection, Electroanal., 30 (2018) 1556-1565.
  • 6. A. Erdem, Nanomaterial-based electrochemical DNA sensing strategies, Talanta, 74 (2007) 318-325.
  • 7. S. Gürsoy, N. Dükar, Y.T. Yaman, S. Abaci, F. Kuralay, Electroactive polyglycine coatings for nanobiosensing applications: Label-free DNA hybridization, DNA-antitumor agent interaction and antitumor agent determination, Anal. Chim. Acta, 1072 (2019) 15-24.
  • 8. A. Erdem, H. Karadeniz, A. Caliskan, Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions, Electroanal., 21 (2009) 464-471.
  • 9. E.E.S. Bruzaca, I.C. Lopes, E.H.C. Silva, P.A.V. Carvalho, A.A. Tanaka, Electrochemical oxidation of the antitumor antibiotic mitomycin C and in situ evaluation of its interaction with DNA using a DNA-electrochemical sensor, Microchem. J., 133 (2017) 81-89.
  • 10. G.G. Wallace, M. Smyth, H. Zhao, Conducting electroactive polymer-based biosensors, TrAC Trends in Anal. Chem., 18 (1999) 245-251.
  • 11. O.E. Fayemi, A.S. Adekunle, B.E. Swamy, E.E. Ebenso, Electrochemical sensor for the detection of dopamine in real samples using polyaniline/NiO, ZnO, and Fe3O4 nanocomposites on glassy carbon electrode, J. Electroanal. Chem. 818 (2018) 236-249.
  • 12. F. Kuralay, H. Özyörük, A. Yıldız, Potentiometric enzyme electrode for urea determination using immobilized urease in poly(vinyferrocenium) film, Sens. Actuat. B: Chem., 109 (2005) 194-199.
  • 13. S. Cosnier, Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review, Biosens. Bioelectron., 14 (1999) 443-456.
  • 14. X. Liu, L. Zhang, S. Wei, S. Chen, X. Ou, Q. Lu, Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine, Biosens. Bioelectron., 57 (2014) 232-238.
  • 15. M.D. Zavolskova, V.N. Nikitina, E.D. Maksimova, E.E. Karyakiba, Constant potential amperometric flow-injection analysis of ions and neutral molecules transduced by electroactive (conductive) polymers, Anal. Chem., 91 (2019) 7495-7499.
  • 16. D.A.C. Brownson, C.E. Banks, Graphene electrochemistry: an overview of potential applications, Analyst, 135 (2010) 2768-2778.
  • 17. M. Pumera, Graphene-based nanomaterials and their electrochemistry, Chem. Soc. Rev., 39 (2010) 4146-4157.
  • 18. A. Ambrosi, M. Pumera, Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications, Chem. European J., 22 (2016) 153-159.
  • 19. A. Halder, M. Zhang, Q. Chi, Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms, Biosens. Bioelectron., 87 (2017) 764-771.
  • 20. O. Tovide, N. Jahed, C.E. Sunday, K. Kokpas, R.F. Ajayi, H.R. Makelane, K.M. Molapoi S.V. John, P.G. Baker, E.I. Iwuoha, Electro-oxidation of anthracene on polyanilino-graphene composite electrode, Sens. Actuat. B: Chem., 205 (2014) 184-192.
  • 21. N. Dükar, S. Tunç, K. Öztürk, S. Demirci, M. Dumangöz, M. Sönmez çelebi, F. Kuralay, Highly sensitive and selective dopamine sensing in biological fluids with one-pot prepared graphene/poly(o-phenylenediamine) modified electrodes, Mater. Chem. Phys., 228 (2019) 357-362.
  • 22. X. Feng, H. Cheng, Y. Pan, H. Zheng, Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite, Biosens. Bioelectron., 70 (2015) 411-417.
  • 23. E. Muthusankar, V.K. Ponnusamy, D. Ragupathy, Electrochemically sandwiched poly(diphenylamine)/phosphotungstic acid/graphene nanohybrid as highly sensitive and selective urea biosensor, Synt. Metals, 254 (2019) 134-140.
  • 24. X. Liu, H. Zhu, X. Yang, An electrochemical sensor for dopamine based on poly(o-phenylenediamine) functionalized with electrochemically reduced graphene oxide, RSC Adv. 4 (2014) 3706-3712.
  • 25. X. Wang, D. Sun, Y. Tong, Y. Zhong, Z. Chen, A voltammetric aptamer-based thrombin biosensor exploiting signal amplification via synergetic catalysis by DNAzyme and enzyme decorated AuPd nanoparticles on a poly(o-phenylenediamine) support, Microchim. Acta, 184 (2017) 1791-1799.
  • 26. F. Kuralay, A. Erdem, Gold nanoparticle/polymer nanocomposite for highly sensitive drug-DNA interaction, Analyst, 140 (2015) 2876-2880.