Oküler Enfeksiyonların Topikal Tedavisinde Nanopartiküler Sistemlerin Hazırlanması ve Karakterizasyonu

Çalışmada, PLGA nanopartiküllere besifloksasin etken maddesi yüklenmiş ve elde edilen yapının bakteriyel konjuktivit tedavisi için kontrollü ilaç salım sistemi olarak kullanılabilirliği araştırılmıştır. Besifloksasin, sistemik bir formülasyon içermediği ve hem gram-pozitif hem de gram-negative patojenlere karşı etkili olduğu için seçilmiştir. Topikal uygulama sonrasında, besifoksasinin uygulama bölgesindeki kalım süresini uzatmak amacıyla besifloksasinin nanopartiküllere yüklenmiş ve etkinliği test edilmiştir. Bu amaçla, besifloksasin yüklü PLGA nanopartiküller karakterize edilmiş, toksisite ve in vitro salım çalışmaları yapılmıştır. Nanopartiküller, morfolojik yapısı taramalı elektron mikroskobu, boyut ve yük analizi Zeta Sizer, fizikokimyasal yapısı Fourier Dönüşümü Kızılötesi Spektrometresi (FTIR) ile karakterize edilmiştir. Zeta Sizer sonuçlarına göre nanopartiküllerin ortalama 200nm boyutuna sahip olduğu belirlenmiştir ve SEM görüntüleri de sonuçları destekler niteliktedir. Nanopartikül yıkama solüsyonunda bulunan ilaç miktarının belirlenmesi sonucu, başlangıçtaki besifloksasin aktif madde konsantrasyonunun %40’ının PLGA nanopartiküllere yüklendiği tespit edilmiştir. Nanopartiküllerden besifloksasinin salım profili, ani bir salım şeklinde olmayıp daha yavaş ve kontrollü bir şekilde salındığı görülmüştür.

Preparation and Characterization of Nanoparticular Systems for Topical Treatment of Ocular Infections

In this study, the active ingredient of besifloxacin was loaded into PLGA nanoparticles and the usability of the obtainednanoparticles as a controlled drug release system for the treatment of bacterial conjunctivitis was investigated. Besifloxacin was selected because it does not contain a systemic formulation and is effective against both gram-positive andgram-negative pathogens. After topical application, besifloxacin was loaded into PLGA nanoparticles and tested for effectiveness in order to prolong the residence time of besifoxacin. For this purpose, besifloxacin loaded PLGA nanoparticles werecharacterized and toxicity and in vitro release studies were performed. Nanoparticles were characterized as morphologicalstructure by scanning electron microscopy (SEM), size and charge analysis by Zeta Sizer and physicochemical structure byFourier Transform Infrared Spectrometry (FTIR). According to the Zeta Sizer results, the nanoparticles have a mean sizeof 200nm and the SEM images support the results. It was determined that 40% of the initial concentration of besifloxacinactive substance was loaded on PLGA nanoparticles as a result of the determination of the amount of drug found in thesupernatant. The release pattern of besifloxacin from the nanoparticles was not found to be burst effect but was releasedin a slower and more controlled manner.

___

  • 1. W. Zhang, M.R. Prausnitz, A. Edwards, Modal of transient drug diffusion across cornea, J. Contr. Release., 99 (2004) 241-58.
  • 2. P.K. Indu, R. Smitha, Penetration enhancers and ocular bioadhesive: two new avenues for ophathalmic drug delivery, Drug. Devel. Ind. Pharm., 28 (2002) 353-69.
  • 3. R. Gaudana, H. K. Ananthula, A. Parenky, A. K. Mitra, Ocular drug delivery. The AAPS journal. 12 (2010) 348-360.
  • 4. D.R. Janagam, L. Wu, and T.L. Lowe, Nanoparticles for drug delivery to the anterior segment of the eye, Adv. Drug Deliv. Rev., 122 (2017) 31-64.
  • 5. R. Katara, S. Sachdeva, D.K. Majumdar, Enhancement of ocular efficacy of aceclofenac using biodegradable PLGA nanoparticles: formulation and characterization, Drug Deliv. Translat. Res., 7 (2017) 632-641.
  • 6. H.A. Salama, M. Ghorab, A.A. Mahmoud, M.A. Hady, PLGA Nanoparticles as Subconjunctival Injection for Management of Glaucoma, AAPS PharmSciTech, 18 (2017) 2517-2528.
  • 7. F.S. Mah, C.M. Sanfilippo, Besifloxacin: Efficacy and Safety in Treatment and Prevention of Ocular Bacterial Infections, Ophthalmol. Ther., 5 (2016) 1-20.
  • 8. W. Haas, C.M. Pillar, G.E. Zurenko, J.C. Lee, L.S. Brunner, T.W. Morris, Besifloxacin, a novel fluoroquinolone, has broadspectrum in vitro activity against aerobic and anaerobic bacteria, Antimicrob. Agents and Ch., 53 (2009) 3552-3560.
  • 9. J. Yoshida, A. Kim, K.A. Pratzer, W.J. Stark, Aqueous penetration of moxifloxacin 0.5% ophthalmic solution and besifloxacin 0.6% ophthalmic suspension in cataract surgery patients, J. Cataract and Refrac. Surg., 36 (2010) 1499-1502.10. V. Arulmozhi, K. Pandian, S. Mirunalini, Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB), Coll. and Surf. B: Biointerfac., 110 (2013) 313-320.
  • 11. H.S. Yoo, K.H. Lee, J.E. Oh, T.G. Park, In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicinPLGA conjugates, J. Contr. Rel., 68 (2000) 419-431.
  • 12. C. Fonseca, S. Simoes, R. Gaspar, Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity, J. Contr. Rel., 83 (2002) 273-286.
  • 13. S. Honary, F. Zahir, Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems-A Review (Part 2), Tropical Journal of Pharmaceutical Research, 12 (2013) 265-273.
  • 14. N. Pirooznia, S. Hasannia, A.S. Lotfi, M. Ghanei, Encapsulation of Alpha-1 antitrypsin in PLGA nanoparticles: In vitro characterization as an effective aerosol formulation in pulmonary diseases, J. Nanobiotech., 10 (2012) 1-15.
  • 15. H. Gupta, M. Aqil, R.K. Khar, A. Ali, A. Bhatnagar, G. Mittal, Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine: NBM, 6 (2010) 324-333.
  • 16. A. M. Badawy, A. M. Badawy, A. K. Attia, A. E. Abd-Elaleem, M. M. Abd-Elmoety, S. G. Abd-Elhamid, Spectrophotometric and spectrodensitometric determination of sparfloxacin and besifloxacin hydrochlorides in presence of their peroxide degradation products, Int. J. Pharmac. Analy., 40 (2015) 1254-1268.
  • 17. S.M. Agnihotri, P.R. Vavia, Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application, Nanomedicine: NBM, 5 (2009) 90-95.
  • 18. W. Vishakha, S. Ravindranath, Formulation Development and Evaluation of pH Triggered in situ Ophthalmic Gel of Besifloxacin Hydrochloride, J. Drug Deliv. Ther., 8 (2018) 313-321.
  • 19. B. Saha, R. P. Patel, Formulation and evaluation of niosomal in situ gel of Besifloxacin hydrochloride Ocular delivery system, Univer. J. Res., 2 (2017) 82-95.
  • 20. P. Aksungur, M. Demirbilek, E.B. Denkbaş, N. Ünlü, Comparative evaluation of cyclosporine A/HPβCDincorporated PLGA nanoparticles for development of effective ocular preparations, J. Microencaps., 29 (2012) 605-613.
  • 21. C. Fonseca, S. Simoes, R. Gaspar, Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity, J. Control. Rel., 83 (2002) 273-286.
  • 22. K. Dillen, J. Vandervoort, G. V. Mooter, L. Verheyden, A. Ludwig, Factorial design, physicochemical characterisation and activity of ciprofloxacin-PLGA nanoparticles, Internat. Journal Pharmac., 275 (2004) 171-187.
  • 23. M. E. Sanders, Q. C. Moore, E. W. Norcross, A. Shafiee, M. E. Marquart, Efficacy of besifloxacin in a rabbit model of methicilline-resistant Staphylococcus aureus keratitis, Cornea, 28 (2009) 1055-1060.
  • 24. J.M. Blondeau, Fluoroquinolones: mechanism of action, classification, and development of resistance, Surv. Ophthalmol., 49(2004) 73-78.
  • 25. G. Alexandrakis, E.C. Alfonso, D. Miller, Shifting trends in bacterial keratitis in south Florida and emerging resistance to fluoroquinolones, Ophthalmology, 107 (2000) 1497-502
  • 26. D.C. Hooper, Fluoroquinolone resistance among Grampositive cocci, Lancet Infect. Dis., 2 (2002) 530-538.
  • 27. W. Haas, C.M. Pillar, G.E. Zurenko, J.C. Lee, L.S. Brunner, T.W. Morris, Besifloxacin, A Novel Fluoroquinolone, Has BroadSpectrum in vitro activity against aerobic and anaerobic bacteria, Antimicrob. Agents Chemother., 53 (2009) 3552- 3560.
  • 28. W. Haas, C. M. Pillar, C. K. Hesje, C. M. Sanfilippo, T. W. Morris, Bactericidal Activity of Besifloxacin Against Staphylococci, Streptococcus Pneumoniae and Haemophilus Influenzae, J. Antimicrob. Chemother, 65 (2010) 1441-1447.