Sulu Çam Çıra Ekstraktının Diyabetik Sıçanların Karaciğer ve Böbrek Dokuları Üzerindeki Etkisi

Bu çalışmada, streptozotosinin neden olduğu diyabette çam ağaçlarının çıra kısmından elde edilen sulu özütlerin, sıçan karaciğer ve böbrek dokuları üzerindeki etkisi araştırılmıştır. Erkek Sprague Dawley sıçanları beş gruba ayrıldı: 1) Kontrol, 2) STZ grubu 3) STZ grubu+Çam ağaçlarının çıra kısmından elde edilen sulu özütler (sırasıyla 100 g/L, 200 g/L ve 400 g/L) 10 hafta süre ile uygulandı. Çam çıra özütünün karaciğer ve böbrek dokusunda oksidatif stres (Malondialdehit (MDA), İndirgenmiş glutatyon (GSH), yükseltgenmiş glutatyon (GSSG)) üzerinde faydalı etkiler gösterdiği belirlendi. Diyabetik sıçanların karaciğer ve böbrek dokularında glikojen, kolesterol, alfa tokoferol, retinol, palmitik asit, stearik asit, oleik asit, linoleik asit, araşidonik asit ve dokosaheksaenoik asit parameterleri üzerinde çam çıra özütünün genel olarak olumlu etkiler gösterdiği tespit edildi. İn vitro ortamda yapılan çalışmalarda, sığır, domuz pankreası, mantar ve bakterilerden elde edilen amilaz enzimlerinin aktivitesi üzerine çam ekstraktının inhibitör etki yapmadığı gözlendi. Ayrıca disakkaritleri hidroliz eden α-glukozidaz enzimi üzerine de çam çırasının inhibitör etkiye sahip olmadığı saptandı

The Effect of Aqueous Extract of Pine Kindling on the Liver and Kidney Tissues of Diabetic Rats

In this study, the effect of aqueous extract of kindling wood obtained from pine trees on liver and kidney tissues of streptozotocin (STZ)-induced diabetic rats was investigated. Male Sprague Dawley rats were divided into five groups: 1) Control,2) STZ rats 3) STZ rats treated with aqueous extract obtained from kindling wood of pine trees (respectively 100 g/L, 200g/L and 400 g/L) for 10 weeks. According to our results, it was determined that this extract showed beneficial effects onoxidative stress (Malondialdehyde (MDA), Reduced glutathione (GSH), Oxidized glutathione (GSSG)) in liver and kidney tissues. Pine kindling extract showed generally positive effects on glycogen, cholesterol, alpha tocopherol, retinol, palmitic acid,stearic acid, oleic acid, linoleic acid, arachidonic acid and docosahexaenoic acid parameters in the liver and kidney tissuesof diabetic rats. Pine kindling extract did not showed inhibitory effect on the amylase enzyme activity derived from bovine,porcine pancreas, fungi and bacteria during in vitro experiments. Pine kindling extract also did not exhibit inhibitor effecton α-glycosidase enzyme that hydrolyzes disaccharides

___

  • 1. S. Samarghandian, M. Azimi-Nezhad, T. Farkhondeh, Catechin treatment ameliorates diabetes and its complications in streptozotocin-induced diabetic rats, Dose Response, 15 (2017) 1-7.
  • 2. T. Balasubramanian, M. Karthikeyan, K.P. Muhammed Anees, C.P. Kadeeja, K. Jaseela, Antidiabetic and antioxidant potentials of Amaranthus hybridus in streptozotocininduced diabetic rats, J. Diet Suppl., 14 (2017) 395-410.
  • 3. E. Tuzlacı, M.K. Erol, Turkish folk medicinal plants, Part II: Eğridir (Isparta), Fitoterapia, 70 (1999) 593–610.
  • 4. T. Baytop, Therapy with medicinal plants in Turkey (Past and Present), 2 nd edn, Nobel Tıp Bookstore Press, Istanbul, Turkey, 1999.
  • 5. H. Ahn, G.W. Go, Pinus densiflora bark extract (PineXol) decreases adiposity in mice down regulation of hepatic de novo lipogenesis and adipogenesis in white adipose tissue, J. Microbiol. Biotechnol., 27 (2017) 660-667.
  • 6. F. Babaee, L. Safaeian, B. Zolfaghari, S. Haghjoo Javanmard, Cytoprotective effect of hydroalcoholic extract of Pinus eldarica bark against H2O2-induced oxidative stress in human endothelial cells, Iran Biomed., J., 20 (2016) 161-167.
  • 7. J. Yi, H. Qu, Y. Wu, Z. Wang, L. Wang, Study on antitumor, antioxidant and immunoregulatory activities of the purified polyphenols from pinecone of Pinus koraiensis on tumorbearing S180 mice in vivo, Int. J. Biol. Macromol., 94 (2017) 735-744.
  • 8. N. Erdal, S. Gürgül, S. Kavak, A. Yildiz, M. Emre, Deterioration of bone quality by streptozotocin (STZ)-induced type 2 diabetes mellitus in rats, Biol. Trace. Elem. Res., 140 (2011) 342-353.
  • 9. S. Dewanjee, A.K. Das, R. Sahu, M. Gangopadhyay, Antidiabetic activity of Diospyros peregrina fruit: effect on hyperglycemia, hyperlipidemia and augmented oxidative stress in experimental type 2 diabetes, Food Chem. Toxicol., 47 (2009) 2679-2685.
  • 10. H. Ohkawa, N. Ohishi, K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem., 95 (1979) 351-358.
  • 11. G.L. Ellman, Tissue sulfhydryl groups, Arch. Biochem. Biophys., 82 (1959) 70-77.
  • 12. T.P. Akerboom, H. Sies, Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples, Methods Enzymol., 77 (1981) 373-382.
  • 13. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem., 193 (1951) 265-275.
  • 14. A. Hara, N.S. Radin, Lipid extraction of tissues with a lowtoxicity solvent, Anal. Biochem., 90 (1978) 420-426.
  • 15. W.W. Christie, Gas Chromatography and Lipids, The Oily Press, Glaskow, United Kingdom, 1990, p 302.
  • 16. E. Tvrzická, M. Vecka, B. Staňková, A. Žák, Analysis of fatty acids in plasma lipoproteins by gas chromatography–flame ionization detection: Quantitative aspects, Anal. Chim. Acta, 465 (2002) 337-350.
  • 17. D.I. Sánchez-Machado, J. López-Hernández, P. PaseiroLosada, High-performance liquid chromatographic determination of alpha-tocopherol in macroalgae, J. Chromatogr. A, 976 (2002) 277-284.
  • 18. J. López-Cervantes, D.I. Sánchez-Machado, N.J. Ríos-Vázquez, High-performance liquid chromatography method for the simultaneous quantification of retinol, alpha-tocopherol, and cholesterol in shrimp waste hydrolysate, J. Chromatogr. A, 1105 (2006) 135-139.
  • 19. W.J. Hasid, S. Abraham, Chemical procedures for analysis of polysaccharides, In: Methods in Enzymology, vol. III. Academic Press, New York, USA, 1957, pp 34–37.
  • 20. U. Muruganathan, S. Srinivasan, V. Vinothkumar, Antidiabetogenic efficiency of menthol, improves glucose homeostasis and attenuates pancreatic β-cell apoptosis in streptozotocin-nicotinamide induced experimental rats through ameliorating glucose metabolic enzymes, Biomed. Pharmacother., 92 (2017) 229-239.
  • 21. A.G. Moat, J.W. Foster, M.P. Spector, Microbial Physiology, Central Pathways of Carbohydrate Metabolism. Wiley-Liss, Inc, New York, USA, 2003.
  • 22. N. Mushtaq, R. Schmatz, M. Ahmed, L.B. Pereira, P. da Costa, K.P. Reichert, D. Dalenogare, L.P. Pelinson, J.M. Vieira, N. Stefanello, L.S. de Oliveira, N. Mulinacci, M. Bellumori, V.M. Morsch, M.R. Schetinger, Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats, J. Physiol. Biochem., 71 (2015) 743-751.
  • 23. M. Aktaş, U. Değirmenci, S.K. Ercan, L. Tamer, U. Atik, Redükte glutatyon ölçümünde HPLC ve spektrofotometrik yöntemlerin karşılaştırılması, Türk Klinik Biyokimya Derg., 3 (2005) 95-99.
  • 24. N.J. Kruger, A. Von Schaewen, The oxidative pentose phosphate pathway: structure and organization, Curr. Opin. Plant Biol., 6 (2003) 236-246.
  • 25. M. Wang, H.L. Ma, B. Liu, H.B. Wang, H. Xie, R.D. Li, J.F. Wang, Pinus massoniana bark extract protects against oxidative damage in L-02 hepatic cells and mice, Am. J. Chin. Med., 38 (2010) 909-919.
  • 26. K. Parveen, M.R. Khan, M. Mujeeb, W.A. Siddiqui, Protective effects of Pycnogenol on hyperglycemia-induced oxidative damage in the liver of type 2 diabetic rats, Chem. Biol. Interact., 186 (2010) 219-227.
  • 27. B. Ramesh, P. Viswanathan, K.V. Pugalendi, Protective effect of Umbelliferone on membranous fatty acid composition in streptozotocin-induced diabetic rats, Eur. J. Pharmacol., 566 (2007) 231-239.
  • 28. R. R. Brenner, Hormonal modulation of delta6 and delta5 desaturases: case of diabetes, Prostaglandins Leukot. Essent. Fatty Acids, 68 (2003) 151-162.
  • 29. D.L. Nelson, M.M. Cox, Lehninger Biyokimyanın İlkeleri, Palme Publications, Ankara, Turkey, 2005.
  • 30. K.M. Ramkumar, R.S. Vijayakumar, P. Ponmanickam, S. Velayuthaprabhu, G. Archunan, P. Rajaguru Antihyperlipidaemic effect of Gymnema montanum: a study on lipid profile and fatty acid composition in experimental diabetes. Basic Clin. Pharmacol. Toxicol., 103 (2008) 538- 545.
  • 31. R. Naresh Kumar, R. Sundaram, P. Shanthi, Protective role of 20-OH ecdysone on lipid profile and tissue fatty acid changes in streptozotocin induced diabetic rats, Eur. J. Pharmacol., 698 (2013) 489-498.
  • 32. T. Mašek, N. Filipović, L.F. Hamzić, L. Puljak, K. Starčević, Long-term streptozotocin diabetes impairs arachidonic and docosahexaenoic acid metabolism and Δ5 desaturation indices in aged rats, Exp. Gerontol., 60 (2014) 140–146.
  • 33. G. Saravanan, P. Ponmurugan, Ameliorative potential of S-allylcysteine: effect on lipid profile and changes in tissue fatty acid composition in experimental diabetes, Exp. Toxicol. Pathol., 64 (2012) 639-644.
  • 34. P.J. Tuitoek, S.J. Ritter, J.E. Smith, T.K. Basu, Streptozotocininduced diabetes lowers retinol-binding protein and transthyretin concentrations in rats, Br. J. Nutr., 76 (1996) 891-897.
  • 35. Y. Li, Y. Liu, G. Chen, Vitamin A status affects the plasma parameters and regulation of hepatic genes in streptozotocin-induced diabetic rats, Biochimie, 137 (2017) 1-11.
  • 36. K. Takitani, K. Inoue, M. Koh, H. Miyazaki, K. Kishi, A. Inoue, H. Tamai, α-Tocopherol status and altered expression of α-tocopherol-related proteins in streptozotocin-induced type 1 diabetes in rat models, J. Nutr. Sci. Vitaminol. (Tokyo), 60 (2014) 380-386.
  • 37. H. Miyazaki, K. Takitani, M. Koh, R. Takaya, A. Yoden, H. Tamai, α-Tocopherol status and expression of α-tocopherol transfer protein in type 2 diabetic Goto-Kakizaki rats, J. Nutr. Sci. Vitaminol. (Tokyo), 59 (2013) 64-68.
  • 38. X.T. Wang, J. Li, L. Liu, N. Hu, S. Jin, C. Liu, D. Mei, X.D. Liu, Tissue cholesterol content alterations in streptozotocininduced diabetic rats, Acta Pharmacol. Sin., 33 (2012) 909- 917.