Dışkı Örneklerinde Real-Time PCR Analizleri için Bakteriyel DNA Izolasyon Yöntemlerinin Karşılaştırılması
Moleküler mikrobiyoloji çalışmalarında en önemli basamak yüksek kalitede yeterli DNA eldesidir. Bu çalışmada iki hazır ticari izolasyon kiti (QIAamp DNA Stool Mini Kit, Qiagen and PSP Spin Stool DNA Plus Kit, Inivtek) ve modifiye fenol-kloroform ekstraksiyon yöntemi Real-Time qPCR analizleri için belirli bakterilerin dışkıdan izolasyonundaki etkinleri bakımından karşılaştırılmıştır. DNA miktarı Invitek kitinde en yüksek oranda elde edilmiştir. Dışkıya ve PCR karışımına bilinen miktarda hücre ve DNA eklenme deneyleri ve qPCR sonuçları fenol-kloroform ekstraksiyon yönteminin etkinliğinin düşük olduğunu göstermiştir. Hazır ticari dışkıdan izolasyon kitleri DNA eldesi ve saflığı açsıından qPCR deneylerinde kullanılmak üzere daha doğru sonuçlar vermektedir.
Comparison of Bacterial DNA Extraction Methods From Stool Samples for Quantitative Real-Time PCR Analysis
The most crucial step in molecular microbiology studies is choosing an appropriate procedure to obtain sufficient, highquality DNA. Two commercially available kits (QIAamp DNA Stool Mini Kit, Qiagen and PSP Spin Stool DNA Plus Kit, Invitek)and a modified in-house phenol-chloroform extraction method was compared for their efficiency in isolation of certainbacteria from human stool samples for Real-Time qPCR. DNA yield was significantly higher in Invitek when compared to other methods. Spiking experiments and qPCR results revealed that efficiency was in phenol-chloroform extraction was lowerwhen compared to other two commercial kits. Commercial kits have better results in terms of DNA recovery and purity, andhave more accurate results for qPCR experiments.
___
- 1. P.J. Turnbaugh, R.E. Ley, M. Hamady, C.M. Fraser-Liggett, R. Knight, J.I. Gordon, The human microbiome project, Nature, 449 (2007) 804-810.
- 2. F. Guarner, J.R. Malagelada, Gut flora in health and disease, Lancet, 361 (2003) 512-519.
- 3. M.C. Abt, D. Artis, The intestinal microbiota in health and disease: the influence of microbial products on immune cell homeostasis, Curr. Opin. Gastroenterol., 25 (2009) 496-502.
- 4. N.A. Bokulich, J. Chung, T. Battaglia, N. Henderson, M. Jay, H. Li , A. D. Lieber, et al., Antibiotics, birth mode, and diet shape microbiome maturation during early life, Sci. Transl. Med., 8 (2016) 343ra382.
- 5. P.J. Turnbaugh, M. Hamady, T. Yatsunenko, B.L. Cantarel, A. Duncan, R.E. Ley, M.L. Sogin, et al., A core gut microbiome in obese and lean twins, Nature, 457 (2009) 480-484.
- 6. P.J. Turnbaugh, R.E. Ley, M.A. Mahowald, V. Magrini, E.R. Mardis, J.I. Gordon, An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, 444 (2006) 1027-1031.
- 7. G.M. Weinstock, Genomic approaches to studying the human microbiota, Nature, 489 (2012) 250-256.
- 8. E.R. Mardis, Next-generation DNA sequencing methods, Annu. Rev. Genomics. Hum. Genet., 9 (2008) 387-402.
- 9. R.E. Ley, F. Backhed, P. Turnbaugh, C.A. Lozupone, R.D. Knight, J.I. Gordon, Obesity alters gut microbial ecology, Proc. Natl. Acad. Sci. U S A., 102 (2005) 11070-11075.
- 10. I. Sekirov, S.L. Russell, L.C. Antunes, B.B. Finlay, Gut microbiota in health and disease, Physiol. Rev., 90 (2010) 859-904.
- 11. R. Poretsky, R.L. Rodriguez, C. Luo, D. Tsementzi, K.T. Konstantinidis, Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics, PLoS One, 9 (2014) e93827.
- 12. A. Rintala, S. Pietila, E. Munukka, E. Eerola, J.P. Pursiheimo, A. Laiho, S. Pekkala, et al., Gut Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA Extraction Is Minor, J. Biomol. Tech., 28 (2017) 19-30.
- 13. X. Guo, X. Xia, R. Tang, J. Zhou, H. Zhao, K. Wang, Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs, Lett. Appl. Microbiol., 47 (2008) 367-373.
- 14. S.J. Ott, M. Musfeldt, U. Ullmann, J. Hampe, S. Schreiber, Quantification of intestinal bacterial populations by realtime PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora, J. Clin. Microbiol., 42 (2004) 2566-2572.
- 15. F. Fouhy, A.G. Clooney, C. Stanton, M.J. Claesson, P.D.Cotter, 16S rRNA gene sequencing of mock microbial populationsimpact of DNA extraction method, primer choice and sequencing platform, BMC Microbiol., 16 (2016) 123.
- 16. T. Matsuki, K. Watanabe, J. Fujimoto, Y. Miyamoto, T. Takada, K. Matsumoto, H. Oyaizu, et al., Development of 16S rRNAgene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces, Appl. Environ. Microbiol., 68 (2002) 5445-5451.
- 17. T. Rinttila, A. Kassinen, E. Malinen, L. Krogius, A. Palva, Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR, J. Appl. Microbiol., 97 (2004) 1166-1177.
- 18. S. Zielinska, P. Radkowski, A. Blendowska, A. LudwigGalezowska, J.M. Los, M. Los, The choice of the DNA extraction method may influence the outcome of the soil microbial community structure analysis, Microbiologyopen, 6 (2017).
- 19. C.G. Thornton, S. Passen, Inhibition of PCR amplification by phytic acid, and treatment of bovine fecal specimens with phytase to reduce inhibition, J. Microbiol. Methods., 59 (2004) 43-52.
- 20. E.G. Zoetendal, K. Ben-Amor, A.D. Akkermans, T. Abee, W.M. de Vos, DNA isolation protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract, Syst. Appl. Microbiol., 24 (2001) 405- 410.
- 21. C. Ozkul, M. Yalinay, T. Karakan, G. Yilmaz, Determination of certain bacterial groups in gut microbiota and endotoxin levels in patients with nonalcoholic steatohepatitis, Turk. J. Gastroenterol., 28 (2017) 361-369.
- 22. H. Maeda, C. Fujimoto, Y. Haruki, T. Maeda, S. Kokeguchi, M. Petelin, H. Arai, et al., Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria, FEMS Immunol. Med. Microbiol., 39 (2003) 81-86.
- 23. P. Hugon, J.C. Lagier, C. Robert, C. Lepolard, L. Papazian, D. Musso, B. Vialettes, et al., Molecular studies neglect apparently gram-negative populations in the human gut microbiota, J. Clin. Microbiol., 51 (2013) 3286-3293.
- 24. K.A. Le, Y. Li, X.J. Xu, W.T. Yang, T.T. Liu, X.N. Zhao, Y.G. Tang, et al., Alterations in fecal Lactobacillus and Bifidobacterium species in type 2 diabetic patients in Southern China population, Front. Physiol., 3 (2013).
- 25. G. Henderson, F. Cox, S. Kittelmann S, V.H. Miri, M. Zethof, S.J. Noel, G.C. Waghorn, et al., Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities, PLoS One, 8 (2013) e74787.
- 26. T. Lueders, M. Manefield, M.W. Friedrich, Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients, Environ. Microbiol., 6 (2004) 73-78.
- 27. M. Li, J. Gong, M. Cottrill, H. Yu, C. de Lange, J. Burton, E. Topp, Evaluation of QIAamp (R) DNA Stool Mini Kit for ecological studies of gut microbiota, J. Microbiol. Methods., 54 (2003) 13-20.
- 28. M.W. Ariefdjohan, D.A. Savaiano, C.H. Nakatsu, Comparison of DNA extraction kits for PCR-DGGE analysis of human intestinal microbial communities from fecal specimens, Nutr. J., 9 (2010) 23.
- 29. M. Remely, E. Aumueller, C. Merold, S. Dworzak, B. Hippe, J. Zanner, A. Pointner, et al., Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity, Gene, 537 (2014) 85-92.