Asimetrik Nanopor Geometrilerinin İz-Aşındırılmış Nanopor Membranlar Kullanarak Nanoparçacık Algılamaya Etkilerinin İncelenmesi

Coulter Counter prensibine dayanan dirençli atış taraması, çeşitli ortamlardaki farklı partikül tiplerini tespit etmek / ayırtetmek için algılama ve ayırma işlemlerinde önemli bir tekniktir. Böyle bir düzenekte, daha küçük parçacıklardan sinyalelde etmek daha büyük parçacıklara kıyasla zor olabilir. Bu çalışmada, gözenek şeklinin sinyal hassasiyeti üzerindeki kritikrolüne odaklanılmıştır. Küçük parçacıkların hassasiyetini incelemek için kum saati ve puro şekilli nanogözenekler simüleedilmiştir. Yüzey yükünü -0.31 C/m2 , -0.007 C/m2ve -0.015 C/m2olarak -0.3 V ile -1 V arasında 0,1’lik artışlarla değiştirerek120 nm çapındaki parçacığın gözenekten geçişi incelenmiştir. Değişken yüzey yüklerine sahip özdeş boyutlu parçacıklar içinsinyaller farklı konsantrasyonlarda karşılaştırılmıştır. Her gözenek şeklinden elde edilen sinyal büyüklüklerinin ve normalizeedilmiş akım değişikliklerinin karşılaştırılması, puro şeklindeki gözeneğin kum saati gözeneğine kıyasla daha küçük boyutluparçacıklar için daha belirgin sinyaller verdiğini göstermiştir. Sonuçlar, kum saati şeklindeki gözeneğin, daha küçük parça cıkları ayırt etmek için puro şeklinden daha yüksek hassasiyet sağladığını ve kum saati gözeneğinin nanogözenek sensöruygulamaları için tercih edilebileceğini ortaya koymaktadır.

Effects of Asymmetric Nanopore Geometries onNanoparticle Sensing Using Track-Etched Nanopore Membranes

Resistive pulse sensing, based on the Coulter Counter principle, is an important assay for sensing and separation processes to detect/discriminate several types of particles in various mediums. In such a set-up, attaining the signal from the smaller particles can be hard compared to larger particles. In this work, we focus on the critical role of pore shape on signal precision. We have simulated hourglass and cigar shaped nanopores to study the sensitivity for small particles. We have considered the translocation of 120 nm diameter particle by altering the surface charge as -0.001 C/m2, -0.007 C/m2and -0.015 C/m2 under the applied potential between -0.3 V and -1 V with 0.1 increments. We have compared the signals in different concentration for identical-sized particles with varying surface charges. Comparison of pulse magnitudes and normalized current changes obtained from each pore shapes have shown that the cigar shaped pore yields more prominent signals for smaller sized particles than the hourglass pore. The results reveal that the hourglass shaped pore provides higher sensitivity than cigar shaped to discriminate the smaller particles and the hourglass pore might be preferable for nanopore sensor applications.

___

  • 1. K. Liu, C. Pan, A. Kuhn, A.P. Nievergelt, G.E. Fantner, O. Milenkovic, Detecting topological variations of DNA at single-molecule level, Nat. Commun., 10 (2019) 3.
  • 2. L.T. Sexton, L.P. Horne, S.A. Sherrill, G.W. Bishop, L.A. Baker, C.R. Martin, Resistive-pulse studies of proteins and protein/ antibody complexes using a conical nanotube sensor, J. Amer. Chem. Soc., 43 (2007) 13144-52.
  • 3. A. Darvish, J.S. Lee, B. Peng, J. Saharia, R. Venkat Kalyana Sundaram, G. Goyal, Mechanical characterization of HIV1 with a solidstate nanopore sensor, Electrophoresis, 2018.
  • 4. S. Lee, Y. Zhang, H.S. White, C.C. Harrell, C.R. Martin, Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy, Anal. Chem., 76 (2004) 6108- 15.
  • 5. G. Goyal, K.J. Freedman, M.J. Kim, Gold nanoparticle translocation dynamics and electrical detection of single particle diffusion using solid-state nanopores, Anal. Chem., 85 (2013) 8180-87.
  • 6. C.C. Lai, C.J. Chang, Y.S. Huang, W.C. Chang, F.G. Tseng, Y.L. Chueh, Desalination of saline water by nanochannel arrays through manipulation of electrical double layer, Nano energy, 12 (2015) 394-400.
  • 7. T. Hoenen, A. Groseth, K. Rosenke, R. J. Fischer, A. Hoenen, S.D. Judson, Nanopore sequencing as a rapidly deployable Ebola outbreak tool, Emer. Infect. Diseases, 22 (2016) 331.
  • 8. A. Siria, P. Poncharal, A. L. Biance, R. Fulcrand, X. Blase, S.T. Purcell, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494 (2013) 455.
  • 9. M.X. Quintanilla-Carvajal, B.H. Camacho-Díaz, L.S. Meraz-Torres, J.J. Chanona-Pérez, L. Alamilla-Beltrán, A. Jimenéz-Aparicio, Nanoencapsulation: a new trend in food engineering processing, Food Engineer. Rev., 2 (2010) 39-50. 10. W.H. Coulter, Means for counting particles suspended in a fluid.: US Patent 2,656,508; 1953.
  • 11. D. Kaya, A. Dinler, N. San, K. Kececi, Effect of Pore Geometry on Resistive-Pulse Sensing of DNA Using Track-Etched PET Nanopore Membrane, Electrochimica Acta, 202 (2016) 157- 65.
  • 12. K.P. Singh, M. Kumar, Effect of gate length and dielectric thickness on ion and fluid transport in a fluidic nanochannel, Lab on a Chip, 12 (2012) 1332-9.
  • 13. W.J. Lan, C. Kubeil, J.W. Xiong, A. Bund, H.S. White, Effect of Surface Charge on the Resistive Pulse Waveshape during Particle Translocation through Glass Nanopores, J. Physic. Chem.C., 118 (2014) 2726-34.
  • 14. E. Weatherall, G.R. Willmott, Conductive and Biphasic Pulses in Tunable Resistive Pulse Sensing, J. Physic. Chem. B., 119 (2015) 5328-35.
  • 15. Y. Qiu, C.Y. Lin, P. Hinkle, T.S. Plett, C. Yang, J.V. Chacko, Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles, ACS Nano, 10 (2016) 8413-22.
  • 16. J. Menestrina, C. Yang, M. Schiel, I. Vlassiouk, Z.S. Siwy, Charged particles modulate local ionic concentrations and cause formation of positive peaks in resistive-pulse-based detection, J. Phys. Chem. C., 118 (2014) 2391-8.
  • 17. J. Cervera, B. Schiedt, R. Neumann, S. Mafé, P. Ramírez, Ionic conduction, rectification, and selectivity in single conical nanopores, J. Chem. Phys., 124 (2006) 104706.
  • 18. D. Gillespie, D. Boda, Y. He, P. Apel, Z.S. Siwy, Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing, Biophys. J., 95 (2008) 609-19.
  • 19. Z. Siwy, P. Apel, D. Dobrev, R. Neumann, R. Spohr, C. Trautmann, Ion transport through asymmetric nanopores prepared by ion track etching, Nucl. Instrum. Meth. B, 208 (2003) 143-148.
  • 20. H. Zhang, X. Hou, Z. Yang, D. Yan, L. Li, Y. Tian, Bio‐inspired smart single asymmetric hourglass nanochannels for continuous shape and ion transport control, Small, 11 (2015) 786-91.
  • 21. P.Y. Apel, I.V. Blonskaya, S.N. Dmitriev, O.L. Orelovitch, A. Presz, B. A. Sartowska, Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles, Nanotechnology, 18 (2007) 305302.
  • 22. P. Ramírez, P.Y. Apel, J. Cervera, S. Mafé, Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties, Nanotechnology, 19 (2008) 315707.
  • 23. F.M. Gilles, M. Tagliazucchi, O. Azzaroni, I. Szleifer, Ionic Conductance of Polyelectrolyte-Modified Nanochannels: Nanoconfinement Effects on the Coupled Protonation Equilibria of Polyprotic Brushes, J. Phys. Chem. C., 120 (2016) 4789-98.
  • 24. K.K. Chen, L. Shan, S.Y. He, G.Q. Hu, Y.G. Meng, Y. Tian, Biphasic Resistive Pulses and Ion Concentration Modulation during Particle Translocation through Cylindrical Nanopores, J. Phys. Chem. C, 119 (2015) 8329-35.
  • 25. M. Firnkes, D. Pedone, J. Knezevic, M. Döblinger, U. Rant, Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis, Nano Lett., 10 (2010) 2162-7.
  • 26. S. Cabello-Aguilar, A.A. Chaay, M. Bechelany, C. PochatBohatier, E. Balanzat, J.M. Janot, Dynamics of polymer nanoparticles through a single artificial nanopore with a high-aspect-ratio, Soft Matter., 10 (2014) 8413-9.
  • 27. K.E. Venta, M.B. Zanjani, X. Ye, G. Danda, C.B. Murray, J.R. Lukes, Gold nanorod translocations and charge measurement through solid-state nanopores, Nano Lett., 14 (2014) 5358-64.
  • 28. D. Yilmaz, D. Kaya, K. Keçeci, A. Dinler, Effects of Nanopore Shape in Resistive-Pulse Sensing for Particle Discrimination (Submitted).
  • 29. Y. Youn, S. Han, Investigation of field effects in a solid-state nanopore transistor, Phys. Chem. Chem. Phys., 17 (2015) 27806-11.
  • 30. R. Vogel, G. Willmott, D. Kozak, G.S. Roberts, W. Anderson, L. Groenewegen, Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor, Anal. Chem., 83 (2011) 3499-506.
  • 31. J. Jiang, G. Oberdörster, P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, J. Nanopart. Res., 11 (2009) 77-89.
  • 32. S. Movahed S, D. Li, Electrokinetic motion of a rectangular nanoparticle in a nanochannel, J. Nanopart. Res., 14 (2012) 1032.