Farklı Kiral Selektörler ile Kapiler Elektroforez ve İlgili Tekniklerle Kiral Ayrımlar: Bir Derleme

Analitik saflıkta ve büyük ölçekli üretim çalışmaları için çözüm yolları bulmaya çalışan farmakoloji ve doğa bilimleriyleilgilenen araştırmacıların ilgisini kiral bileşiklerin tayin ve enantiyomerik olarak ayrımı konuları çekmiştir. KapilerElektroforez, kiral selektörlerin yüksek ayırım gücü ve verimliliği gibi üstün özellikleri nedeniyle enantiyomerik ayırımlar içinen önemli analitik yaklaşımlardan biri haline gelmiştir. Yüksek ayırma gücü ve yüksek etkinlik gösterme gibi sahip olduğuüstün özelliklerden dolayı kapiler elektroforez, enantiyomerik ayırmalarda kullanılan en önemli analitik yaklaşımlardan birihaline gelmiştir. Kapiler Elektroforez temeline dayanan teknolojinin gelişim sürecine paralel olarak kiral seçicilerin farklıformlardaki gelişimide süremektedir. Bu derlemede, kapiler elektroforezde kullanılan teknikleri açıklayan bazı tanımlayıcıteorik bilgilere yer verilmiştir. Ayrıca son 10 yılda gerçekleştilen (2010-2020) ve moleküler baskılı polimerler, siklodekstrinler,metal-organik çerçeveler, iyonik sıvılar, nanopartiküller, monolitler gibi farklı kiral seçicilerin ve farklı kiral katkı maddelerinkullanıldığı kiral ayırmalara dayanan çalışmalarda incelenmiştir.

Chiral Separations by Capillary Electrophoresis and Related Techniques withDifferent Chiral Selectors: A Review

Recognition mechanism and enantiomerically separations of the chiral compounds are subjects that always stimulate the great interest of researchers in pharmacology and natural sciences, who are interested in finding solutions for both analytical purity and preparative purposes. Capillary Electrophoresis has become one of the most important analytical approaches for enantiomeric separations due to its superior properties, such as high resolution and high efficiency of chiral selectors. In this field, where researchers continue to be interested, the distinctions continue to develop day by day, with the introduction of new techniques developed on the basis of Capillary Electrophoresis philosophy in parallel with the development process of technology, as well as the chiral selectors of many different forms. In this review, besides some descriptive theoretical information about capillary electrophoresis and the techniques associated with it, studies on chiral separations using different chiral selectors or different chiral additives, such as molecularly imprinted polymers, cyclodextrins, Metal-organic frameworks, ionic liquids, nanoparticles and monoliths in the last nearly 10 years (2010-2020) were examined.

___

  • 1. G. Gübitz, M.G. Schmid, Chiral separation by capillary electromigration techniques, J. Chromatogr. A, 1204 (2008) 140-156.
  • 2. E. Sánchez-López, M. Castro-Puyana, M.L. Marina, A.L. Crego, Chiral Separations by Capillary Electrophoresis, Anal. Sep. Sci. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2 (2015) 731-775.
  • 3. B. Preinerstorfer, M. Lämmerhofer, W. Lindner, Advances in enantioselective separations using electromigration capillary techniques, Electrophoresis, 30 (2009) 100-132.
  • 4. C. Tano, S.-H. Son, J. Furukawa, T. Furuike, N. Sakairi, Enantiomeric separation by MEKC using dodecyl thioglycoside surfactants: Importance of an equatorially oriented hydroxy group at C-2 position in separation of dansylated amino acids, Electrophoresis, 30 (2009) 2743- 2746.
  • 5. A.P. Kumar, J.H. Park, Chiral separation of basic compounds on a cellulose 3,5-dimethylphenylcarbamate-coated zirconia monolithin basic eluents by capillary electrochromatography, J. Chromatogr. A, 1218 (2011) 6548-6553.
  • 6. J. Yang, D.S. Hage, Characterization of the binding and chiral separation of d- and l-tryptophan on a high-performance immobilized human serum albumin column, J. Chromatogr. A, 645 (1993) 241-250.
  • 7. G. Sagratini, M. Buccioni, G. Marucci, E. Poggesi, M. Skorski, S. Costanzi, D. Giardinà, Chiral analogues of (+)-cyclazosin as potent α1B-adrenoceptor selective antagonist, Bioorganic Med. Chem., 26 (2018) 3502-3513.
  • 8. K.D. Altria, I.H. Grant, Methods in Molecular Biology, Capillary Electrophoresis Guidebook, Principles, Operation and Applications, Capillary Electrophoresis Guidebook. Humana Press, 52 (2003) 197-210.
  • 9. V. Houbart, M. Fillet, Advances in Microfluidics-New Applications in Biology, Energy, and Materials Sciences. InTech, Edited by Xiao-Ying Yu, (2016) 1-30.
  • 10. Tagliaro, F., Deyl, Z., Miks̆ík, I., Ulfelder, K. J., J Concepts and principles of high performance capillary electrophoresis John Wiley & Sons, Ltd, (2006) 41-63.
  • 11. F.U. Aşıcıoğlu, S.T. Koluaçık, B.Ü. Çetinkaya, F. Akyüz, Tıp Kurumu Başkanlığı Biyoloji İhtisas Dairesi, A., Kapiller Elektroforez Teknolojisinin Klinik ve Adli Amaçlı DNA Analizlerinde Kullanımı: Geleneksel Jel Elektroforez Yöntemi Ile Karşılaştırma. n.d. Adli Tıp Derg., 16 (2002) 88-93.
  • 12. S. Aşır, D. Sarı, A. Derazshamshir, F. Yılmaz, K. Şarkaya, A. Denizli, Dopamine-imprinted monolithic column for capillary electrochromatography, Electrophoresis, 38 (2017) 3003-3012.
  • 13. C.A. Lucy, R.S. Underhill, Characterization of the cationic surfactant induced reversal of electroosmotic flow in capillary electrophoresis, Anal. Chem., 68 (1996) 300-305.
  • 14. S. Aşır, A. Derazshamshir, F. Yılmaz, A. Denizli, Triazine herbicide imprinted monolithic column for capillary electrochromatography, Electrophoresis, 36 (2015) 2888- 2895.
  • 15. C. Aydoğan, A. Gökaltun, A. Denizli, Z. El Rassi, Biochromatographic applications of polymethacrylate monolithic columns used in electro- and liquid phaseseparationsΨ, J. Liq. Chromatogr. Relat. Technol., 41 (2018) 572-582.
  • 16. G. Gübitz, M.G. Schmid, Chiral separation principles in chromatographic and electromigration techniques, Mol. Biotechnol., 32 (2006) 159-179.
  • 17. H. Poppe, A. Cifuentes, W.T. Kok, Theoretical description of the influence of external radial fields on the electroosmotic flow in capillary electrophoresis, Anal. Chem., 68 (1996) 888-893.
  • 18. M.G. Cikalo, K.D. Bartle, P. Myers, Influence of the electrical double-layer on electroosmotic flow in capillary electrochromatography, J. Chromatogr. A, 836 (1999) 35-51.
  • 19. J.H. Knox, Terminology and nomenclature in capillary electroseparation systems, J. Chromatogr. A, 680 (1994) 3-13.
  • 20. A Denizli, Ö.İ. Küfrevioğlu, Pozitif Matbaacılık, Ankara, Protein kromatografisi ve yeni nesil polimerik sistemler (2010).
  • 21. T. Gündüz, Gazi Kitabevi, Kromatografi ve elektroforez (2015).
  • 22. J.H. Knox, I.H., Grant, Miniaturisation in pressure and electroendosmotically driven liquid chromatography: Some theoretical considerations, Chromatographia, 24 (1987) 135-143.
  • 23. A.M. Enlund, G. Hagman, R. Isaksson, D. Westerlund, Capillary electrochromatography of basic compounds in pharmaceutical analysis, TrAC-Trends Anal. Chem., 21 (2002) 412-427.
  • 24. S. Aşır, D. Sarı, A. Derazshamshir, F. Yılmaz, K. Şarkaya, A. Denizli, Dopamine-imprinted monolithic column for capillary electrochromatography, Electrophoresis, 38 (2017) 3003-3012.
  • 25. C. Aydogan, A. Denizli, Electrochromatographic Enantioseparation of Amino Acids Using Polybutylmethacrylate-based Chiral Monolithic Column by Capillary Electrochromatography, Chirality, 24 (2012) 606- 609.
  • 26. S. Tanwar, R. Bhushan, Enantioresolution of Amino Acids: A Decade’s Perspective, Prospects and Challenges, Chromatographia, 78 (2015) 1113-1134.
  • 27. Z.-X. Zheng, J.-M. Lin, F. Qu, T. Hobo, Chiral separation with ligand-exchange micellar electrokinetic chromatography using aD-penicillamine-copper(II) ternary complex as chiral selector, Electrophoresis, 24 (2003) 4221-4226.
  • 28. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Electrokinetic Separations with Micellar Solutions and Open-Tubular Capillaries, Anal. Chem., 56 (1984) 111-113.
  • 29. K. Otsuka, S. Terabe, T. Ando, Electrokinetic chromatography with micellar solutions. Separation of phenylthiohydantoinamino acids, J. Chromatogr. A, 332 (1985) 219-226.
  • 30. S. Terabe, K. Otsuka, T. Ando, Electrokinetic Chromatography with Micellar Solution and Open-Tubular Capillary, Anal. Chem., (1985) 834-841.
  • 31. J. Palmer, D.S. Burgi, N.J. Munro, J.P. Landers, Electrokinetic injection for stacking neutral analytes in capillary and microchip electrophoresis, Anal. Chem., 73 (2001) 725-731. 32. S. Kodama, A. Yamamoto, Y. Saitoh, A. Matsunaga, K. Okamura, R. Kizu, K. Hayakawa, Enantioseparation of vinclozolin by γ-cyclodextrin-modified micellar electrokinetic chromatography, J. Agric. Food Chem., 50 (2002) 1312-1317.
  • 33. Aumatell, R.J. Wells, Enantiomeric differentiation of a wide range of pharmacologically active substances by cyclodextrin-modified micellar electrokinetic capillary chromatography using a bile salt, J. Chromatogr. A, 688 (1994) 329-337.
  • 34. T. Ueda, F. Kitamura, R. Mitchell, T. Metcalf, T. Kuwana, A. Nakamoto, Chiral Separation of naphthalene-2,3- dicarboxaldehyde-labeled amino acid enantiomers by cyclodextrin-modified micellar electrokinetic chromatography with laser-induced fluorescence detection. Anal. Chem., 63 (1991) 2979-2981.
  • 35. Dobashi, T. Ono, S. Hara, J. Yamaguchi, Optical resolution of enantiomers with chiral mixed micelles by electrokinetic chromatography, Anal. Chem., 61 (1989) 1984-1986.
  • 36. D. Sarı, A. Derazshamshir, S. Aşır, I. Göktürk, F. Yılmaz, A. Denizli, Separation of D, L-ampicillin by ligand exchangemicellar electrokinetic chromatography., Biointerface Res. Appl. Chem., (2019) 4522-4533.
  • 37. C.P. Palmer, S. Terabe, Micelle Polymers as Pseudostationary Phases in MEKC: Chromatographic Performance and Chemical Selectivity, Anal. Chem., 69 (1997) 1852-1860.
  • 38. V.A. Davankov, S.V. Rogozhin, Ligand chromatography as a novel method for the investigation of mixed complexes: stereoselective effects in α-amino acid copper(II) complexes, J. Chromatogr. A, 60 (1971) 284-312.
  • 39. M.G. Schmid, R. Rinaldi, D. Dreveny, G. Gübitz, Enantioseparation of α-amino acids and dipeptides by ligand-exchange capillary electrophoresis of various L-4- hydroxyproline derivatives, J. Chromatogr. A, 846 (1999) 157-163.
  • 40. M.G. Schmid, N. Grobuschek, O. Lecnik, G. Gubitz, Chiral Ligand-Exchange Capillary Electrophoresis, 48, 2, (2001) 143-154.
  • 41. Z. Chen, T. Hobo, Chemically L-phenylalaninamide-modified monolithic silica column prepared by a Sol-Gel process for enantioseparation of dansyl amino acids by ligand exchange-capillary electrochromatography, Anal. Chem., 73 (2001) 3348-3357.
  • 42. X. Mu, L. Qi, J. Qiao, X. Yang, H. Ma, Enantioseparation of dansyl amino acids and dipeptides by chiral ligand exchange capillary electrophoresis based on Zn(II)-l-hydroxyproline complexes coordinating with γ-cyclodextrins, Anal. Chim. Acta, 846 (2014) 68-74.
  • 43. M.G. Schmid, M. Laffranchini, D. Dreveny, G. Gübitz, Chiral separation of sympathomimetics by ligand exchange capillary electrophoresis, Electrophoresis, 20 (1999) 2458- 2461.
  • 44. P. Gozel, H. Michelsen, R.N. Zare, E. Gassmann, Electrokinetic Resolution of Amino Acid Enantiomers with Copper(II)- Aspartame Support Electrolyte, Anal. Chem.,50 (1987) 44- 49.
  • 45. T.C. Bøg-Hansen, Crossed immuno-affinoelectrophoresis, An analytical method to predict the result of affinity chromatography, Anal. Biochem., 56 (1973) 480-488.
  • 46. K.M. Łącki, F.J. Riske, Affinity Chromatography: An Enabling Technology for Large‐Scale Bioprocessing, Biotechnol. J., 15 (2020) 1800397.
  • 47. Y.H. Chu, L.Z. Avila, J. Gao, G.M. Whitesides, Affinity Capillary Electrophoresis, Acc. Chem. Res., 28 (1995) 461-468.
  • 48. Y.H. Chu, L. Z. Avila, H.A. Biebuyck, G.M. Whitesides, Using Affinity Capillary Electrophoresis to Identify the Peptide in a Peptide Library that Binds Most Tightly to Vancomycin. J. Org. Chem. 58 (1993) 648-652.
  • 49. M. Azad, L. Hernandez, A. Plazas, M. Rudolph, F.A. Gomez, Determination of binding constants between the antibiotic ristocetin A and D-Ala-D-Ala terminus peptides by affinity capillary electrophoresis, Chromatographia, 57 (2003) 339- 343.
  • 50. Zhang, D.S. Hage, Capillary Electromigration Separation Methods. Chapter 18-Clinical Chemistry Applications of Capillary Electromigration Methods, Elsevier (2018) 423- 452.
  • 51. Zhang, A.G. Woolfork, K. Suh, S. Ovbude, C. Bi, M. Elzoeiry, D.S. Hage, Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: A review, J. Pharm. Biomed. Anal., 177 (2020) 112882.
  • 52. Ekberg, K. Mosbach, Molecular imprinting: A technique for producing specific separation materials, Trends Biotechnol., 7 (1989) 92-96.
  • 53. T. Sajini, M.G. Gigimol, B. Mathew, A brief overview of molecularly imprinted polymers supported on titanium dioxide matrices, Mater. Today Chem., 11 (2019) 283-295.
  • 54. Turiel, A. Martín-Esteban, Molecularly imprinted polymers for sample preparation: A review, Anal. Chim. Acta, 668 (2010) 87-99.
  • 55. G. Vasapollo, R.D. Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano, G. Mele, Molecularly Imprinted Polymers: Present and Future Prospective, Int. J. Mol. Sci., 12 (2011) 5908-5945.
  • 56. J. Wackerlig, P.A. Lieberzeit, Polymers, Molecularly Imprinted, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2016) 1-20.
  • 57. Z.-S. Liu, C. Zheng, C. Yan, R.-Y. Gao, Molecularly imprinted polymers as a tool for separation in CEC, Electrophoresis, 28 (2007) 127-136.
  • 58. Malik, Advances in sol-gel based columns for capillary electrochromatography: Sol-gel open-tubular columns, Electrophoresis, 23 (2002) 3973-3992.
  • 59. A.P. McKeown, M.R. Euerby, C.M. Johnson, M. Koeberle, H. Lomax, H. Ritchie, P. Ross, An evaluation of unbonded silica stationary phases for the separation of basic analytes using capillary electrochromatography, Chromatographia, 52 (2000) 777-786.
  • 60. H. Engelhardt, F.T. Hafner, Porous and non-porous stationary phases for capillary electrochromatography under conditions of reversed phase chromatography, Chromatographia, 52 (2000) 769-776.
  • 61. Chaiyasut, Y. Takatsu, S. Kitagawa, T. Tsuda, Estimation of the dissociation constants for functional groups on modified and unmodified silica gel supports from the relationship between electroosmotic flow velocity and pH, Electrophoresis, 22 (2001) 1267-1272.
  • 62. W.J. Cheong, S.H. Yang, Open tubular molecular imprinted phases in chiral capillary electrochromatography, Methods Mol. Biol., 970 (2013) 469-487.
  • 63. Y. Xue, X. Gu, Y. Wang, C. Yan, Recent advances on capillary columns, detectors, and two-dimensional separations in capillary electrochromatography, Electrophoresis, 36 (2015) 124-134.
  • 64. N.W. Smith, Z. Jiang, Developments in the use and fabrication of organic monolithic phases for use with high-performance liquid chromatography and capillary electrochromatography, J. Chromatogr. A, 1184 (2008) 416- 440.
  • 65. K. Şarkaya, A. Denizli, Moleküler Baskılama Yöntemi ile Kapiler Elektrokromatografi (CEC) Sisteminde Hidrofobik Amino Asitlerin Enantiyomerlerinin Ayrılması. 2018.
  • 66. J. Ou, Z. Liu, H. Wang, H. Lin, J. Dong, H. Zou, Recent development of hybrid organic-silica monolithic columns in CEC and capillary LC, Electrophoresis, 36 (2015) 62-75.
  • 67. P. Kuś, J. Kusz, M. Książek, E. Pieprzyca, M. Rojkiewicz, Spectroscopic characterization and crystal structures of two cathinone derivatives: N-ethyl-2-amino-1-phenylpropan1-one (ethcathinone) hydrochloride and N-ethyl-2-amino1-(4-chlorophenyl) propan-1-one (4-CEC) hydrochloride, Forensic Toxicol., 35 (2017) 114-124.
  • 68. B.B. Mamba, R.W. Krause, T.J. Malefetse, E.N. Nxumalo, Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water, Environ. Chem. Lett., 5 (2007) 79-84.
  • 69. A.E. Holmes, Cyclodextrins and their complexes: Chemistry, analytical methods, applications, Chirality, 19 (2007) 162- 162.
  • 70. M. Arslan, S. Sayin, M. Yilmaz, Enantioselective sorption of some chiral carboxylic acids by various cyclodextrin-grafted iron oxide magnetic nanoparticles, Tetrahedron Asymmetry, 24 (2013) 982-989.
  • 71. N. Li, J. Chen, Y.P. Shi, Magnetic reduced graphene oxide functionalized with β-cyclodextrin as magnetic solidphase extraction adsorbents for the determination of phytohormones in tomatoes coupled with high performance liquid chromatography, J. Chromatogr. A, 1441 (2016) 24-33.
  • 72. L.A. Kartsova, N.V. Komarova, Influence of α- and β-Cyclodextrins on the Separation of Positional Isomers of Benzoic Acid Nitro, Amino, Chloro, and Hydroxy Derivatives by Capillary Electrophoresis, J. Anal. Chem., 58 (2003) 972- 978.
  • 73. S. Fanali, Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors, J. Chromatogr. A, 875 (2000) 89-122.
  • 74. Perrin, Y.V. Heyden, M. Maftouh, D.L. Massart, Rapid screening for chiral separations by short‐end injection capillary electrophoresis using highly sulfated cyclodextrins as chiral selectors, Electrophoresis, 22 (2001) 3203-3215.
  • 75. J. Zhou, J. Tang, W. Tang, Recent development of cationic cyclodextrins for chiral separation, TrAC-Trends Anal. Chem., 65 (2015) 22-29.
  • 76. Z.-X. Fei, M. Zhang, J.-H. Zhang, L.-M. Yuan, Chiral metalorganic framework used as stationary phases for capillary electrochromatography, Anal. Chim. Acta, 830 (2014) 49-55.
  • 77. Kuila, N.A. Surib, N.S. Mishra, A. Nawaz, K.M. Leong, L.C. Sim, P. Saravanan, S. Ibrahim, Metal Organic Frameworks: A New Generation Coordination Polymers for Visible Light Photocatalysis, ChemistrySelect, 2 (2017) 6163-6177.
  • 78. Li, Y. Zhang, D. Ma, L. Li, G. Li, G. Li, Z. Shi, S. Feng, A strategy toward constructing a bifunctionalized MOF catalyst: Postsynthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites, Chem. Commun., 48 (2012) 6151-6153.
  • 79. M. Ma, D. Zacher, X. Zhang, R.A. Fischer, N. Metzler-Nolte, A method for the preparation of highly porous, nanosized crystals of isoreticular metal-organic frameworks, Cryst. Growth Des., 11 (2011) 185-189.
  • 80. T. Grancha, J. Ferrando-Soria, D. Armentano, E. Pardo, Synthesis of a chiral rod-like metal-organic framework from a preformed amino acid-based hexanuclear Wheel, J. Coord. Chem., 72 (2019) 1204-1221.
  • 81. J.R. Li, J. Sculley, H.C. Zhou, Metal-organic frameworks for separations, Chem. Rev., 112 (2012) 869-932.
  • 82. O.K. Farha, A.Ö. Yazaydin, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities, Nat. Chem., 2 (2010) 944-948.
  • 83. T. Zhang, F. Song, W. Lin, Blocking bimolecular activation pathways leads to different regioselectivity in metal-organic framework catalysis, Chem. Commun., 48 (2012) 8766-8768.
  • 84. G. Wang, Y. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst, B. Li, S. Karakalos, A.J. Kropf, E.C. Wegener, J. Sokolowski, M. Chen, D. Myers, D. Su, K.L. More, S. Litster, G. Wu, Highly active atomically dispersed CoN 4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy, Energy Environ. Sci., 12 (2019) 250-260.
  • 85. J. Zhu, L. Qin, A. Uliana, J. Hou, J. Wang, Y. Zhang, X. Li, S. Yuan, J. Li, M. Tian, J. Lin, B. Van der Bruggen, Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration, ACS Appl. Mater. Interfaces, 9 (2017) 1975-1986.
  • 86. J. Zhuang, C.H. Kuo, L.Y. Chou, D.Y. Liu, E. Weerapana, E., C.K. Tsung, Optimized metal-organic-framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation, ACS Nano 8 (2014) 2812-2819.
  • 87. N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites, Chem. Rev., 112 (2012) 933-969.
  • 88. N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Zeolite membranes-a review and comparison with MOFs, Chem. Soc. Rev., 44 (2015) 7128-7154.
  • 89. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, American Association for the Advancement of science (AAAS) 341, (2013) 374-385.
  • 90. A.J. Fletcher, K.M. Thomas, M.J. Rosseinsky, Flexibility in metal-organic framework materials: Impact on sorption properties, J. Solid State Chem., 178 (2005) 2491-2510.
  • 91. S. Han, Y. Wei, C. Valente, I. Lagzi, J.J. Gassensmith, A. Coskun, J.F. Stoddart, B.A. Grzybowski, Chromatography in a single metal-organic framework (MOF) crystal, J. Am. Chem. Soc., 132 (2010) 16358-16361.
  • 92. C.X. Yang, X.P. Yan, Metal-organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics, Anal. Chem., 83 (2011) 7144-7150.
  • 93. C.-X. Yang, Y.-J. Chen, H.-F. Wang, X.-P. Yan, High-performance separation of fullerenes on metal-organic framework MIL101(Cr). Chem. - A Eur. J., 17 (2011) 11734-11737.
  • 94. Z-Y. Gu, D-Q. Jiang, H-F. Wang, X-Y. Cui, X-P. Yan, Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks, J. Phys. Chem., 114 (2010) 311-316.
  • 95. Z-X. Fei, M. Zhang, J-H. Zhang, L-M. Yuan, Chiral metalorganic framework used as stationary phases for capillary electrochromatography, Anal. Chim. Acta, 830 (2014) 49-55.
  • 96. S.M. Xie, M. Zhang, Z.X. Fei, L.M. Yuan, Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography, J. Chromatogr. A, 1363 (2014) 137-143.
  • 97. Z.-X. Fei, M. Zhang, S.-M. Xie, L.-M. Yuan, Capillary electrochromatographic fast enantioseparation based on a chiral metal-organic framework, Electrophoresis, 35 (2014) 3541-3548.
  • 98. M.T. Matyska, J.J. Pesek, A. Katrekar, Open tubular capillary electrochromatography using etched fused-silica tubing modified with chemically bonded liquid crystals, Anal. Chem., 71 (1999) 5508-5514.
  • 99. X. Wang, C. Cheng, S. Wang, M. Zhao, P.K. Dasgupta, S. Liu, Nanocapillaries for open tubular chromatographic separations of proteins in femtoliter to picoliter samples, Anal. Chem., 81 (2009) 7428-7435.
  • 100. Z-G. Gu, C. Zhan, J. Zhang, X. Bu, Chiral chemistry of metalcamphorate frameworks, Chem. Soc. Rev., 45 (2016) 3122- 3144.
  • 101. S. Lim, K. Suh, Y. Kim, M. Yoon, H. Park, D.N. Dybtsev, K. Kim, Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks, Chem. Commun., 48 (2012) 7447-7449.
  • 102. R. Das, P. Pachfule, R. Banerjee, P. Poddar, Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): Finding the border of metal and metal oxides, Nanoscale, 4 (2012) 591-599.
  • 103. M.M. Wanderley, C. Wang, C. De Wu, W. Lin, A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols, J. Am. Chem. Soc., 134 (2012) 9050-9053.
  • 104. L.L. Wu, R.P. Liang, J. Chen, J.D. Qiu, Separation of chiral compounds using magnetic molecularly imprinted polymer nanoparticles as stationary phase by microchip capillary electrochromatography, Electrophoresis, 39 (2018) 356-362.
  • 105. K. Şarkaya, S. Aşir, I. Göktürk, S. Ektirici, F. Yilmaz, H. Yavuz, A. Denizli, Separation of histidine enantiomers by capillary electrochromatography with molecularly imprinted monolithic columns. Sep. Sci. Plus (2020) 3:235-245.
  • 106. K. Şarkaya, S. Aşir, I. Göktürk, F. Yilmaz, H. Yavuz, A. Denizli, Electrochromatographic separation of hydrophobic amino acid enantiomers by molecularly imprinted capillary columns, Process Biochem., 92 (2020) 69-77.
  • 107. K. Hroboň Ová, A. Lomenova, Molecularly imprinted polymer as stationary phase for HPLC separation of phenylalanine enantiomers. Monatshefte für Chemie- Chemical Monthly 149 (2018) 939-946.
  • 108. C-Y. Yue, G-S. Ding, F-J. Liu, A-N. Tang, Water-compatible surface molecularly imprinted silica nanoparticles as pseudostationary phase in electrokinetic chromatography for the enantioseparation of tryptophan, J. Chromatogr. A, 1311 (2013) 176-182.
  • 109. H.J. Liang, T.R. Ling, J.F. Rick, T.C. Chou, Molecularly imprinted electrochemical sensor able to enantroselectivly recognize d and l-tyrosine, Anal. Chim. Acta., 542 (2005) 83- 89.
  • 110. S.H. Ou, L.S. Pan, J.J. Jow, H.R. Chen, T.R. Ling, Molecularly imprinted electrochemical sensor, formed on Ag screenprinted electrodes, for the enantioselective recognition of D and L phenylalanine, Biosens. Bioelectron., 105 (2018) 143-150.
  • 111. J. Zhou, Q. Chen, Y. Wang, Q. Han, Y. Fu, Stereoselectivity of tyrosine enantiomers in electrochemical redox reactions on gold matrices, Electrochim. Acta, 59 (2012) 45-48.
  • 112. X. Chen, S. Zhang, X. Shan, Z. Chen, Derivative chiral copper(II) complexes as template of an electrochemical molecular imprinting sol-gel sensor for enantiorecognition of aspartic acid, Anal. Chim. Acta, 1072 (2019) 54-60.
  • 113. Z. Iskierko, A. Checinska, P.S. Sharma, K. Golebiewska, K. Noworyta, P. Borowicz, K. Fronc, V. Bandi, F. D’Souza, W. Kutner, Molecularly imprinted polymer based extendedgate field-effect transistor chemosensors for phenylalanine enantioselective sensing, J. Mater. Chem. C, 5 (2017) 969- 977.
  • 114. Y. Kong, J. Wei, W. Wang, Z. Chen, Separation of tryptophan enantiomers with polypyrrole electrode column by potential-induced technique, Electrochim. Acta, 56 (2011) 4770-4774.
  • 115. H.S. Lee, J. Hong, Chiral and electrokinetic separation of amino acids using polypyrrole-coated adsorbents, J. Chromatogr. A, 868 (2000) 189-196.
  • 116. V. Syritski, J. Reut, A. Menaker, R.E. Gyurcsányi, A. Öpik, Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of l-aspartic acid, Electrochim. Acta, 53 (2008) 2729-2736.
  • 117. J. Gu, H. Dai, Y. Kong, Y. Tao, H. Chu, Z. Tong, Chiral electrochemical recognition of cysteine enantiomers with molecularly imprinted overoxidized polypyrrole-Au nanoparticles, Synth. Met., 222 (2016) 137-143.
  • 118. S. Lee, Y. Choi, S. Lee, K. Jeong, S. Jung, Chiral recognition based on enantioselective interactions of propranolol enantiomers with cyclosophoraoses isolated fromRhizobium meliloti, Chirality, 16 (2004) 204-210.
  • 119. W. Liu, C. Holdsworth, L. Ye, Synthesis of molecularly imprinted polymers using a functionalized initiator for chiral‐ selective recognition of propranolol, Chirality, 32 (2020) 370-377.
  • 120. G.-N. Chen, N. Li, T. Luo, Y.-M. Dong, Enantiomers Recognition of Propranolol Based on Organic-Inorganic Hybrid OpenTubular MIPs-CEC Column Using 3-(Trimethoxysilyl) Propyl Methacrylate as a Cross-Linking Monomer, J. Chromatogr. Sci., 55 (2017) 471-476.
  • 121. R. Gutierrez-Climente, A. Gomez-Caballero, A. Guerreiro, D. Garcia-Mutio, N. Unceta, M.A. Goicolea, R.J. Barrio, Molecularly imprinted nanoparticles grafted to porous silica as chiral selectors in liquid chromatography, J. Chromatogr. A, 1508 (2017) 53-64.
  • 122. R. Gutiérrez-Climente, A. Gómez-Caballero, M. Halhalli, B. Sellergren, M.A. Goicolea, R.J. Barrio, Iniferter-mediated grafting of molecularly imprinted polymers on porous silica beads for the enantiomeric resolution of drugs, J. Mol. Recognit., 29 (2016) 106-114.
  • 123. J.M. Brunel, BINOL: A versatile chiral reagent. Chem. Rev. 2005, 105, 857-897.
  • 124. H. Dong, D. Zhang, H. Lin, Y. Wang, L. Liu, M. Zheng, X. Li, C. Zhang, J. Li, P. Zhang, J. So, A surface molecularly imprinted polymer as chiral stationary phase for chiral separation of 1,1′- binaphthalene-2-naphthol racemates, Chirality, 29 (2017) 340-347.
  • 125. Kulsing, R. Knob, M. Macka, P. Junor, R.I. Boysen, M.T.W. Hearn, Molecular imprinted polymeric porous layers in open tubular capillaries for chiral separations, J. Chromatogr. A, 1354 (2014) 85-91.
  • 126. Kulsing, Y. Yang, J.M. Chowdhury, R.I. Boysen, M.T.W. Hearn, Use of peak sharpening effects to improve the separation of chiral compounds with molecularly imprinted porous polymer layer open-tubular capillaries, Electrophoresis, 38 (2017) 1179-1187.
  • 127. J. Ou, X. Li, S. Feng, J. Dong, X. Dong, L. Kong, M. Ye, H. Zou, Preparation and evaluation of a molecularly imprinted polymer derivatized silica monolithic column for capillary electrochromatography and capillary liquid chromatography, Anal. Chem., 79 (2007) 639-646.
  • 128. Q-L. Zhao, J. Zhou, L-S. Zhang, Y-P. Huang, Z-S. Liu, Coatings of molecularly imprinted polymers based on polyhedral oligomeric silsesquioxane for open tubular capillary electrochromatography, Talanta, 152 (2016) 277-282.
  • 129. H.Y. Zong, X. Liu, Z.S. Liu, Y.P. Huang, Molecular crowdingbased imprinted monolithic column for capillary electrochromatography, Electrophoresis, 36 (2015) 818-824.
  • 130. L.N. Mu, X.H. Wang, L. Zhao, Y.P. Huang, Z.S. Liu, Low crosslinked molecularly imprinted monolithic column prepared in molecular crowding conditions, J. Chromatogr. A, 1218 (2011) 9236-9243.
  • 131. X.X. Li, X. Liu, L.H. Bai, H.Q. Duan, Y.P. Huang, Z.S. Liu, Preparation of imprinted monolithic column under molecular crowding conditions, Chinese Chem. Lett., 22 (2011) 989-992.
  • 132. X-H. Wang, Q. Dong, L-L. Ying, S-S. Chi, Y-H. Lan, Y-P. Huang, Z-S. Liu, Enhancement of selective separation on molecularly imprinted monolith by molecular crowding agent, Anal. Bioanal. Chem., 409 (2017) 201-211.
  • 133. X.-X. Shi, L. Xu, H.-Q. Duan, Y.-P. Huang, Z.-S. Liu, CEC separation of ofloxacin enantiomers using imprinted microparticles prepared in molecular crowding conditions, Electrophoresis, 32 (2011)N1348-1356.
  • 134. H. Wang, Q. Xu, J. Wang, W. Du, F. Liu, X. Hu, Dendrimer-like amino-functionalized hierarchical porous silica nanoparticle: A host material for 2,4-dichlorophenoxyacetic acid imprinting and sensing, Biosens. Bioelectron., 100 (2018) 105-114.
  • 135. W-F. Song, Q-L. Zhao, X-J. Zhou, L-S. Zhang, Y-P. Huang, Z-S. Liu, A star-shaped molecularly imprinted polymer derived from polyhedral oligomeric silsesquioxanes with improved site accessibility and capacity for enantiomeric separation via capillary electrochromatography, Microchim. Acta, 186 (2019) 1-7.
  • 136. X. Li, Z. Zhou, Enantioseparation performance of novel benzimido-β-cyclodextrins derivatized by ionic liquids as chiral stationary phases, Anal. Chim. Acta, 819 (2014) 122- 129.
  • 137. J. Zhao, X. Lu, Y. Wang, J. Lv, “Click” preparation of a novel “native-phenylcarbamoylated” bilayer cyclodextrin stationary phase for enhanced chiral differentiation, J. Chromatogr. A, 1381 (2015) 253-259.
  • 138. P. Řezanka, D. Sýkora, M. Novotný, M. Havlík, V. Král, Nonaqueous Capillary Electrophoretic Enantioseparation of Water Insoluble Tröger’s Base Derivatives Using β-Cyclodextrin as Chiral Selector, Chirality, 25 (2013) 810- 813.
  • 139. Z.-I. Szabó, L. Szőcs, D.-L. Muntean, B. NoszáL, G. Tóth, Chiral Separation of Uncharged Pomalidomide Enantiomers Using Carboxymethyl-β-Cyclodextrin: A Validated Capillary Electrophoretic Method, Chirality, 28 (2016) 199-203.
  • 140. Sánchez-López, A. Salgado, A.L. Crego, M.L. Marina, Investigation on the enantioseparation of duloxetine by capillary electrophoresis, NMR, and mass spectrometry, Electrophoresis, 35 (2014) 2842-2847.
  • 141. K. Németh, G. Tárkányi, E. Varga, T. Imre, R. Mizsei, R. Iványi, J. Visy, J. Szemán, L. Jicsinszky, L. Szente, M. Simonyi, Enantiomeric separation of antimalarial drugs by capillary electrophoresis using neutral and negatively charged cyclodextrins, J. Pharm. Biomed. Anal., 54 (2011) 475- 481.
  • 142. P. Lehnert, A. Přibylka, V. Maier, J. Znaleziona, J. Ševčík, M. Douša, Enantiomeric separation of R,S-tolterodine and R,S -methoxytolterodine with negatively charged cyclodextrins by capillary electrophoresis, J. Sep. Sci., 36 (2013) 1561-1567.
  • 143. Gogolashvili, L. Chankvetadze, N. Takaishvili, A. Salgado, B. Chankvetadze, Separation of terbutaline enantiomers in capillary electrophoresis with neutral cyclodextrin‐type chiral selectors and investigation of the structure of selector‐ selectand complexes using nuclear magnetic resonance spectroscopy, Electrophoresis, 41 (2020) 1023-1030.
  • 144. Y. Dai, S. Wang, J. Zhou, J. Tang, W. Tang, A family of single-isomer, dicationic cyclodextrin chiral selectors for capillary electrophoresis: Mono-6 A -ammonium-6 C -butylimidazolium-β-cyclodextrin chlorides, Electrophoresis, 34 (2013) 833-840.
  • 145. Y. Dai, S. Wang, J. Zhou, Y. Liu, D. Sun, J. Tang, W. Tang, Cationic cyclodextrin as versatile chiral selector for enantiomeric separation in capillary electrophoresis, J. Chromatogr. A, 1246 (2012) 98-102.
  • 146. A.S. Rizvi, G. Murtaza, M. Irfan, Y. Xiao, F. Qu, Determination of Kynurenine Enantiomers by Alpha-Cyclodextrin, Cationicβeta-Cyclodextrin and Their Synergy Complemented with Stacking Enrichment in Capillary Electrophoresis, J. Chromatogr. A, 1622 (2020) 461128.
  • 147. Y. Feng, T. Wang, Z. Jiang, B. Chankvetadze, J. Crommen, Comparative enantiomer affinity pattern of β-blockers in aqueous and nonaqueous CE using single-component anionic cyclodextrins, Electrophoresis, 36 (2015) 1358-1364.
  • 148. J. Boonleang, J.F. Stobaugh, New single isomer negatively charged β-cyclodextrin derivatives as chiral selectors in capillary electrophoresis, Electrophoresis, 34 (2013) 1232- 1240.
  • 149. K. Lomsadze, E.D. Vega, A. Salgado, A.L. Crego, G.K.E. Scriba, M.L. Marina, B. Chankvetadze, Separation of enantiomers of norephedrine by capillary electrophoresis using cyclodextrins as chiral selectors: Comparative CE and NMR studies, Electrophoresis, 33 (2012) 1637-1647.
  • 150. K. Lomsadze, A. Salgado, E. Calvo, J. Antonio López, B. Chankvetadze, Comparative NMR and MS studies on the mechanism of enantioseparation of propranolol with heptakis(2,3-diacetyl-6-sulfo)-β-cyclodextrin in capillary electrophoresis with aqueous and non-aqueous electrolytes, Electrophoresis, 32 (2011) 1156-1163.
  • 151. Y. Liu, M. Deng, J. Yu, Z. Jiang, X. Guo, Capillary electrophoretic enantioseparation of basic drugs using a new single-isomer cyclodextrin derivative and theoretical study of the chiral recognition mechanism, J. Sep. Sci., 39 (2016) 1766-1775.
  • 152. S. Samakashvili, A. Salgado, G.K.E. Scriba, B. Chankvetadze, Comparative Enantioseparation of Ketoprofen with Trimethylated α-, β-, and γ-Cyclodextrins in Capillary Electrophoresis and Study of Related Selector-Selectand Interactions Using Nuclear Magnetic Resonance Spectroscopy, Chirality, 25 (2013) 79-88.
  • 153. L. Li, X. Li, Q. Luo, T. You, A comprehensive study of the enantioseparation of chiral drugs by cyclodextrin using capillary electrophoresis combined with theoretical approaches, Talanta, 142 (2015) 28-34.
  • 154. W. Li, L. Zhao, H. Zhang, X. Chen, S. Chen, Z. Zhu, Z. Hong, Y. Chai, Enantioseparation of new triadimenol antifungal active compounds by electrokinetic chromatography and molecular modeling study of chiral recognition mechanisms, Electrophoresis, 35 (2014) 2855-2862.
  • 155. S. Béni, T. Sohajda, G. Neumajer, R. Iványi, L. Szente, B. Noszál, Separation and characterization of modified pregabalins in terms of cyclodextrin complexation, using capillary electrophoresis and nuclear magnetic resonance, J. Pharm. Biomed. Anal., 51 (2010) 842-852.
  • 156. W. Li, G. Tan, L. Zhao, X. Chen, X. Zhang, Z. Zhu, Y. Chai, Computer-aided molecular modeling study of enantioseparation of iodiconazole and structurally related triadimenol analogues by capillary electrophoresis: Chiral recognition mechanism and mathematical model for predicting chiral separation, Anal. Chim. Acta, 718 (2012) 138-147.
  • 157. X. Guo, Z. Wang, L. Zuo, Z. Zhou, X. Guo, T. Sun, Quantitative prediction of enantioseparation using 2-cyclodextrin derivatives as chiral selectors in capillary electrophoresis, Analyst, 139 (2014) 6511-6519.
  • 158. Gogolashvili, E. Tatunashvili, L. Chankvetadze, T. Sohajda, M. Gumustas, S.A. Ozkan, A. Salgado, B. Chankvetadze, Separation of brombuterol enantiomers in capillary electrophoresis with cyclodextrin‐type chiral selectors and investigation of structure of selector‐selectand complexes using nuclear magnetic resonance spectroscopy, Electrophoresis, 40 (2019) 1904-1912.
  • 159. Fradi, A.C. Servais, C. Lamalle, M. Kallel, M. Abidi, J. Crommen, M. Fillet, Chemo- and enantio-selective method for the analysis of amino acids by capillary electrophoresis with in-capillary derivatization, J. Chromatogr. A, 1267 (2012) 121-126.
  • 160. J. Tang, L. Pang, J. Zhou, S. Zhang, W. Tang, Per(3-chloro-4- methyl) phenylcarbamate cyclodextrin clicked stationary phase for chiral separation in multiple modes highperformance liquid chromatography, Anal. Chim. Acta, 946 (2016) 96-103.
  • 161. X. Li, X. Yao, Y. Xiao, Y. Wang, Enantioseparation of single layer native cyclodextrin chiral stationary phases: Effect of cyclodextrin orientation and a modeling study, Anal. Chim. Acta, 990 (2017) 174-184.
  • 162. M. Castro-Puyana, I. Lammers, J. Buijs, C. Gooijer, F. Ariese, Sensitized phosphorescence as detection method for the enantioseparation of bupropion by capillary electrophoresis, Electrophoresis, 31 (2010) 3928-3936.
  • 163. A. Aranyi, A. Péter, I. Ilisz, F. Fülöp, G.K.E. Scriba, Cyclodextrinmediated enantioseparation of phenylalanine amide derivatives and amino alcohols by capillary electrophoresisRole of complexation constants and complex mobilities, Electrophoresis, 35 (2014) 2848-2854.
  • 164. Z.I. Szabó, G. Tóth, G. Völgyi, B. Komjáti, G. Hancu, L. Szente, T. Sohajda, S. Béni, D.L. Muntean, B. Noszál, Chiral separation of asenapine enantiomers by capillary electrophoresis and characterization of cyclodextrin complexes by NMR spectroscopy, mass spectrometry and molecular modeling, J. Pharm. Biomed. Anal., 117 (2016) 398-404.
  • 165. K. Phatthiyaphaibun, W. Som-Aum, M. Srisa-Ard, J. Threeprom, Chiral separation of pheniramine by capillary electrophoresis partial-filling technique using hydroxypropyl-β-cyclodextrin as chiral selector, J. Anal. Chem., 65 (2010) 803-808.
  • 166. J. Znaleziona, I. Fejos, J. Ševčík, M. Douša, S. Béni, V. Maier, Enantiomeric separation of tapentadol by capillary electrophoresis-Study of chiral selectivity manipulation by various types of cyclodextrins, J. Pharm. Biomed. Anal., 105 (2015) 10-16.
  • 167. T. Sohajda, Z. Szakács, L. Szente, B. Noszál, S. Béni, Chiral recognition of imperanene enantiomers by various cyclodextrins: A capillary electrophoresis and NMR spectroscopy study, Electrophoresis, 33 (2012) 1458-1464.
  • 168. T. Sohajda, W.H. Hu, L.L. Zeng, H. Li, L. Szente, B. Noszál, S. Béni, Evaluation of the interaction between sitagliptin and cyclodextrin derivatives by capillary electrophoresis and nuclear magnetic resonance spectroscopy, Electrophoresis, 32 (2011) 2648-2654.
  • 169. W.A. Wan Ibrahim, S.R. Arsad, H. Maarof, M.M. Sanagi, H.Y. Aboul-Enein, Chiral Separation of Four Stereoisomers of Ketoconazole Drugs Using Capillary Electrophoresis, Chirality, 27 (2015) 223-227.
  • 170. M. Steinhoff, N. Vergnolle, S.H. Young, M. Tognetto, S. Amadesi, H.S. Ennes, M. Trevisani, M.D. Hollenberg, J.L. Wallace, G.H. Caughey, S.E. Mitchell, L.M. Williams, P. Geppetti, E.A. Mayer, N.W. Bunnett, Agonists of proteinaseactivated receptor 2 induce inflammation by a neurogenic mechanism, Nat. Med., 6 (2000) 151-158.
  • 171. J. Zhou, H. Yao, H. Shao, Y. Li, Z. Zhang, Enantioseparation of β-agonists with carboxymethyl-β-cyclodextrin by CE, J. Liq. Chromatogr. Relat. Technol., 35 (2012) 50-58.
  • 172. Soares Nascimento, J. Fedoce Lopes, L. Guimarães, K. Bastos Borges, Molecular modeling study of the recognition mechanism and enantioseparation of 4-hydroxypropranolol by capillary electrophoresis using carboxymethyl-βcyclodextrin as the chiral selector, Analyst, 139 (2014) 3901- 3910.
  • 173. Y. Qi, X. Zhang, Determination of enantiomeric impurity of levamlodipine besylate bulk drug by capillary electrophoresis using carboxymethyl-β-Cyclodextrin, Cell Biochem. Biophys., 70 (2014) 1633-1637.
  • 174. J. Zhou, Y. Wang, Y. Liu, J. Tang, W. Tang, Methoxypropylamino β-cyclodextrin clicked AC regioisomer for enantioseparations in capillary electrophoresis, Anal. Chim. Acta, 868 (2015) 73-79.
  • 175. I.W. Muderawan, T.T. Ong, W.H. Tang, D.J. Young, C.B. Ching, S.C. Ng, Synthesis of ammonium substituted β-cyclodextrins for enantioseparation of anionic analytes, Tetrahedron Lett., 46 (2005) 1747-1749.
  • 176. Y. Xiao, Y. Wang, T.-T. Ong, L. Ge, S.N. Tan, D.J. Young, T.T.Y. Tan, S.-C. Ng, Chiral capillary electrophoresis with cationic pyrrolidinium-β-cyclodextrin derivatives as chiral selectors, J. Sep. Sci., 33 (2010) 1797-1805.
  • 177. S. Wang, Y. Dai, J. Wu, J. Zhou, J. Tang, W. Tang, Methoxyethylammonium monosubstituted β-cyclodextrin as the chiral selector for enantioseparation in capillary electrophoresis, J. Chromatogr. A, 1277 (2013) 84-92.
  • 178. S. Kodama, A. Taga, S. Aizawa, T. Kemmei, Y. Honda, K. Suzuki, A. Yamamoto, Direct enantioseparation of lipoic acid in dietary supplements by capillary electrophoresis using trimethyl-β-cyclodextrin as a chiral selector, Electrophoresis, 33 (2012) 2441-2445.
  • 179. A.C. Servais, A. Rousseau, M. Fillet, K. Lomsadze, A. Salgado, J. Crommen, B. Chankvetadze, Separation of propranolol enantiomers by CE using sulfated β-CD derivatives in aqueous and non-aqueous electrolytes: Comparative CE and NMR study, Electrophoresis, 31 (2010) 1467-1474.
  • 180. A.C. Servais, A. Rousseau, G. Dive, M. Frederich, J. Crommen, M. Fillet, Combination of capillary electrophoresis, molecular modelling and nuclear magnetic resonance to study the interaction mechanisms between single-isomer anionic cyclodextrin derivatives and basic drug enantiomers in a methanolic background electrolyte, J. Chromatogr. A, 1232 (2012) 59-64.
  • 181. Tutu, G. Vigh, Synthesis, analytical characterization and initial capillary electrophoretic use in an acidic background electrolyte of a new, single-isomer chiral resolving agent: Heptakis(2-O-sulfo-3-O-methyl-6-O-acetyl)-β-cyclodextrin, Electrophoresis, 32 (2011) 2655-2662.
  • 182. P. Nowak, M. Garnysz, M. Woźniakiewicz, P. Kościelniak, Fast separation of warfarin and 7-hydroxywarfarin enantiomers by cyclodextrin-assisted capillary electrophoresis, J. Sep. Sci., 37 (2014) 2625-2631.
  • 183. S. Mohr, S. Pilaj, M.G. Schmid, Chiral separation of cathinone derivatives used as recreational drugs by cyclodextrinmodified capillary electrophoresis, Electrophoresis, 33 (2012) 1624-1630.
  • 184. L. Chankvetadze, A.C. Servais, M. Fillet, A. Salgado, J. Crommen, B. Chankvetadze, Comparative enantioseparation of talinolol in aqueous and non-aqueous capillary electrophoresis and study of related selector-selectand interactions by nuclear magnetic resonance spectroscopy, J. Chromatogr. A, 1267 (2012) 206-216.
  • 185. Z.I. Szabó, M. Foroughbakhshfasaei, R. Gál, P. Horváth, B. Komjáti, B. Noszál, G. Tóth, Chiral separation of lenalidomide by liquid chromatography on polysaccharide-type stationary phases and by capillary electrophoresis using cyclodextrin selectors, J. Sep. Sci., 41 (2018) 1414-1423.
  • 186. Q. Zhang, Y. Du, J. Chen, G. Xu, T. Yu, X. Hua, J. Zhang, Investigation of chondroitin sulfate D and chondroitin sulfate E as novel chiral selectors in capillary electrophoresis, Analytical and Bioanalytical Chemistry. Springer (2014) 1557-1566.
  • 187. Y. Yao, P. Song, X. Wen, M. Deng, J. Wang, X. Guo, Chiral separation of 12 pairs of enantiomers by capillary electrophoresis using heptakis-(2,3-diacetyl-6-sulfato)-βcyclodextrin as the chiral selector and the elucidation of the chiral recognition mechanism by computational methods, J. Sep. Sci., 40 (2017) 2999-3007.
  • 188. S. Nojavan, A.R. Fakhari, Chiral separation and quantitation of cetirizine and hydroxyzine by maltodextrin-mediated CE in human plasma: Effect of zwitterionic property of cetirizine on enantioseparation, Electrophoresis, 32 (2011) 764-771.
  • 189. Tabani, M. Mahyari, A. Sahragard, A.R. Fakhari, A. Shaabani, Evaluation of sulfated maltodextrin as a novel anionic chiral selector for the enantioseparation of basic chiral drugs by capillary electrophoresis, Electrophoresis, 36 (2015) 305- 311.
  • 190. Y. Su, X. Mu, L. Qi, Development of a capillary electrophoresis system with Mn(ii) complexes and β-cyclodextrin as the dual chiral selectors for enantioseparation of dansyl amino acids and its application in screening enzyme inhibitors, RSC Adv.,5 (2015) 28762-28768.
  • 191. J.A. McKee, T.K. Green, Synthesis of 2,3-O-dibenzyl-6-Osulfobutyl-α and β cyclodextrins: new chiral surfactants for capillary electrophoresis, Tetrahedron Lett., 56 (2015) 4451- 4454.
  • 192. Terabe, S., Procedia Chemistry. Twenty-five years of micellar electrokinetic chromatography 2 (2010), 2-8.
  • 193. Y. Liu, S.A. Shamsi, Combined use of chiral ionic liquid surfactants and neutral cyclodextrins: Evaluation of ionic liquid head groups for enantioseparation of neutral compounds in capillary electrophoresis, J. Chromatogr. A, 1360 (2014) 296-304.
  • 194. Přibylka, M. Švidrnoch, E. Tesařová, D.W. Armstrong, V. Maier, The empirical comparison of cyclofructans and cyclodextrins as chiral selectors in capillary electrophoretic separation of atropisomers of R,S -1,1’-binaphthalene-2,2’- diyl hydrogen phosphate, J. Sep. Sci., 39 (2016) 973-979.
  • 195. W. Ding, T. Yu, Y. Du, X. Sun, Z. Feng, S. Zhao, X. Ma, M. Ma, C. Chen, A metal organic framework-functionalized monolithic column for enantioseparation of six basic chiral drugs by capillary electrochromatography, Microchim. Acta, 187 (2020) 1-10.
  • 196. N. Ye, J. Ma, J. An, J. Li, Z. Cai, H. Zong, Separation of amino acid enantiomers by a capillary modified with a metalorganic framework, RSC Adv., 6 (2016) 41587-41593.
  • 197. Z. Geng, Q. Song, B. Yu, H. Cong, Using ZIF-8 as stationary phase for capillary electrophoresis separation of proteins, Talanta, 188 (2018) 493-498.
  • 198. X. Wang, A. Lamprou, F. Svec, Y. Bai, H. Liu, Polymer-based monolithic column with incorporated chiral metal-organic framework for enantioseparation of methyl phenyl sulfoxide using nano-liquid chromatography, J. Sep. Sci., 39 (2016) 4544-4548.
  • 199. Pan, W. Wang, H. Zhang, L. Xu, X. Chen, In situ synthesis of homochiral metal-organic framework in capillary column for capillary electrochromatography enantioseparation, J. Chromatogr. A, 1388 (2015) 207-216.
  • 200. J. Ma, N. Ye, J. Li, Covalent bonding of homochiral metalorganic framework in capillaries for stereoisomer separation by capillary electrochromatography, Electrophoresis, 37 (2016) 601-608.
  • 201. L. He, C. Tian, J. Zhang, W. Xu, B. Peng, S. Xie, M. Zi, L. Yuan, Chiral metal‐organic cages used as stationary phase for enantioseparations in capillary electrochromatography, Electrophoresis, 41 (2020) 104-111.
  • 202. Pérez-Quintanilla, S. Morante-Zarcero, I. Sierra, Preparation and characterization of mesoporous silicas modified with chiral selectors as stationary phase for high-performance liquid chromatography, J. Colloid Interface Sci., 414 (2014) 14-23.
  • 203. M. Greño, M. Castro-Puyana, M.Á. García, M.L. Marina, Analysis of antibiotics by CE and CEC and their use as chiral selectors: An update, Electrophoresis, 39 (2018) 235-259.
  • 204. T. Yu, Y. Du, B. Chen, Evaluation of clarithromycin lactobionate as a novel chiral selector for enantiomeric separation of basic drugs in capillary electrophoresis, Electrophoresis, 32 (2011) 1898-1905.
  • 205. Chen, Y. Du, Evaluation of the enantioseparation capability of the novel chiral selector clindamycin phosphate towards basic drugs by micellar electrokinetic chromatography, J. Chromatogr. A, 1217 (2010) 1806-1812.
  • 206. S. Dixit, J.H. Park, Application of rifampicin as a chiral selector for enantioresolution of basic drugs using capillary electrophoresis, J. Chromatogr. A, 1453 (2016) 138-142.
  • 207. A.P. Kumar, J.H. Park, Azithromycin as a new chiral selector in capillary electrophoresis, J. Chromatogr. A, 1218 (2011) 1314-1317.
  • 208. Chankvetadze, G. Blaschke, Enantioseparations using capillary electromigration techniques in nonaqueous buffers, Electrophoresis, 21 (2000) 4159-4178.
  • 209. M.V. Lebedeva, A.F. Prokhorova, E.N. Shapovalova, O.A. Shpigun, Clarithromycin as a chiral selector for enantioseparation of basic compounds in nonaqueous capillary electrophoresis, Electrophoresis, 35 (2014) 2759- 2764.
  • 210. D.A. Jayawardhana, J.A. Crank, Q. Zhao, D.W. Armstrong, X. Guan, Nanopore stochastic detection of a liquid explosive component and sensitizers using boromycin and an ionic liquid supporting electrolyte, Anal. Chem., 81 (2009) 460- 464.
  • 211. V. Maier, V. Ranc, M. Švidrnoch, J. Petr, J. Ševčík, E. Tesařová, D.W. Armstrong, Study on the use of boromycin as a chiral selector in capillary electrophoresis, J. Chromatogr. A, 1237 (2012) 128-132.
  • 212. S. Ren, Q. Zhang, S. Xue, S. Liu, M. Rui, Use of Gamithromycin as a Chiral Selector in Capillary Electrophoresis, J. Chromatogr. A, 1624 (1624) 461099.
  • 213. A.C. Kogawa, H. Regina, N. Salgado, Hoxycyclıne Hyclate: A review of Propertıes, Applıcatıons and Analytıcal methods. International Journal of Life Science and Pharma Research, 2, 4 (2012) 11-25.
  • 214. M.G. Jang, M.D. Jang, J.H. Park, Doxycycline as a new chiral selector in capillary electrophoresis, J. Chromatogr. A, 1508 (2017) 176-181.
  • 215. Q. Zhang, S. Ren, S. Xue, Investigation of fusidic acid as a chiral selector in capillary electrophoresis, Sep. Purif. Technol., 242 (2020) 116768.
  • 216. Nishi, K. Nakamura, H. Nakai, T. Sato, Enantiomer separation by capillary electrophoresis using DEAE-dextran and aminoglycosidic antibiotics, Chromatographia, 43 (1996) 426-430.
  • 217. X. Zhang, S. Qi, C. Liu, X. Zhao, Enantiomeric separation of five acidic drugs via capillary electrophoresis using streptomycin as chiral selector, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1063 (2017) 31-35.
  • 218. Liu, J. Zhang, X. Zhang, L. Zhao, S. Li, Enantiomeric separation of adrenaline, noradrenaline, and isoprenaline by capillary electrophoresis using streptomycin-modified gold nanoparticles, Microchim. Acta, 185 (2018) 1-7.
  • 219. S. Dixit, J.H. Park, Penicillin G as a novel chiral selector in capillary electrophoresis, J. Chromatogr. A, 1326 (2014) 134- 138.
  • 220. A.F. Prokhorova, M.A. Kuznetsov, E.N. Shapovalova, S.M. Staroverov, O.A. Shpigun, Enantioseparations of aromatic carboxylic acid by capillary electrophoresis using eremomycin as a chiral selector in a chitosan-modified capillary Procedia Chemistry, 2 (2010), 9-13.
  • 221. S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, Physical properties of ionic liquids: Database and evaluation, J. Phys. Chem. Ref. Data, 35 (2006) 1475-1517.
  • 222. Olivier-Bourbigou, L. Magna, D. Morvan, Ionic liquids and catalysis: Recent progress from knowledge to applications, Appl. Catal. A Gen., 373 (2010) 1-56.
  • 223. W. Weber, J.T. Andersson, Ionic liquids as stationary phases in gas chromatography-An LSER investigation of six commercial phases and some applications, Anal. Bioanal. Chem., 406 (2014) 5347-5358.
  • 224. Q. Wang, X. Chen, B. Qiu, L. Zhou, H. Zhang, J. Xie, Y. Luo, B. Wang, Ionic liquid as a mobile phase additive in highperformance liquid chromatography for the simultaneous determination of eleven fluorescent whitening agents in paper materials, J. Sep. Sci., 39 (2016) 1242-1248.
  • 225. Zhao, Y. Meng, J.L. Anderson, Polymeric ionic liquids as selective coatings for the extraction of esters using solidphase microextraction, J. Chromatogr. A, 1208 (2008) 1-9.
  • 226. Y. Su, X. Mu, L. Qi, Development of a capillary electrophoresis system with Mn(ii) complexes and β-cyclodextrin as the dual chiral selectors for enantioseparation of dansyl amino acids and its application in screening enzyme inhibitors, RSC Adv., 5 (2015) 28762-28768.
  • 227. Z. Ma, L. Zhang, L. Lin, P. Ji, X. Guo, Enantioseparation of rabeprazole and omeprazole by nonaqueous capillary electrophoresis with an ephedrine-based ionic liquid as the chiral selector, Biomed. Chromatogr., 24 (2010) 1332-1337.
  • 228. Chen, Y. Du, X. Sun, Investigation of maltodextrin-based synergistic system with amino acid chiral ionic liquid as additive for enantioseparation in capillary electrophoresis, Chirality, 29 (2017) 824-835.
  • 229. Yu, L. Zuo, H. Liu, L. Zhang, X. Guo, Synthesis and application of a chiral ionic liquid functionalized β -cyclodextrin as a chiral selector in capillary electrophoresis, Biomed. Chromatogr. 27 (2013) 1027-1033.
  • 230. Greño, M.L. Marina, M. Castro-Puyana, Effect of the combined use of γ-cyclodextrin and a chiral ionic liquid on the enantiomeric separation of homocysteine by capillary electrophoresis, J. Chromatogr. A, 1568 (2018) 222-228.
  • 231. Casado, A. Salgado, M. Castro-Puyana, M.Á. García, M.L. Marina, Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography. Effect of amino acid chiral ionic liquids, J. Chromatogr. A, 1608 (2019) 460407.
  • 232. Y. Cui, X. Ma, M. Zhao, Z. Jiang, S. Xu, X. Guo, Combined Use of Ionic Liquid and Hydroxypropyl- β - C y c l o d e x t r i n for the Enantioseparation of Ten Drugs by Capillary Electrophoresis, Chirality, 25 (2013) 409-414.
  • 233. J. Li, T. Yu, G. Xu, Y. Du, Z. Liu, Z. Feng, X. Yang, Y. Xi, J. Liu, Synthesis and application of ionic l i q u i d functionalized β-cyclodextrin, mono-6-deoxy-6-(4-amino1,2,4-triazolium)-β-cyclodextrin chloride, as chiral selector in capillary electrophoresis, J. Chromatogr. A, 1559 (2018) 178-185.
  • 234. X. Ma, Y. Du, X. Sun, J. Liu, Z. Huang, Synthesis and application of amino alcohol-derived chiral ionic liquids, as additives for enantioseparation in capillary electrophoresis, J. Chromatogr. A, 1601 (2019) 340-349.
  • 235. H. Qing, X. Jiang, J. Yu, Separation of Tryptophan Enantiomers by Ligand-Exchange Chromatography With Novel Chiral Ionic Liquids Ligand, Chirality, 26 (2014) 160-165.
  • 236. X. Sun, K. Liu, Y. Du, J. Liu, X. Ma, Investigation of the enantioselectivity of tetramethylammonium-lactobionate chiral ionic liquid based dual selector systems toward basic drugs in capillary electrophoresis, Electrophoresis, 40 (2019) 1921-1930.
  • 237. M.C. Mavroudi, C.P. Kapnissi-Christodoulou, Evaluation of amino acid ester-based ionic liquids as buffer additives in CE for the separation of 2-arylpropionic acids nonsteroidal anti-inflammatory drugs, Electrophoresis, 35 (2014) 2573- 2578.
  • 238. R. Liu, Y. Du, J. Chen, Q. Zhang, S. Du, Z. Feng, Investigation of the Enantioselectivity of T e t r a m e t h y l a m m o n i u m L-hydroxyproline Ionic Liquid as a Novel Chiral Ligand in Ligand-Exchange CE and Ligand-Exchange MEKC, Chirality, 27 (2015) 58-63.
  • 239. S. Salido-Fortuna, M. Greño, M. Castro-Puyana, M.L. Marina, Amino acid chiral ionic liquids combined with hydroxypropyl-β-cyclodextrin for drug enantioseparation by capillary electrophoresis, J. Chromatogr. A, 1607 (2019) 460375.
  • 240. X. Yang, Y. Du, Z. Feng, Z. Liu, J. Li, Establishment and molecular modeling study of maltodextrin-based synergistic enantioseparation systems with two new hydroxy acid chiral ionic liquids as additives in capillary electrophoresis, J. Chromatogr. A, 1559 (2018) 170-177.
  • 241. W. Yujiao, W. Guoyan, Z. Wenyan, Z. Hongfen, J. Huanwang, C. Anjia, Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β‐CD and chiral ionic liquid ([TBA] [l ‐ASP]) as selectors, Biomed. Chromatogr., 28 (2014) 610-614.
  • 242. Q. Zhang, J. Zhang, S. Xue, M. Rui, B. Gao, A. Li, J. Bai, Z. yin, E.M. Anochie, Enhanced enantioselectivity of native α-cyclodextrins by the synergy of chiral ionic liquids in capillary electrophoresis, J. Sep. Sci., 41 (2018) 4525-4532. 243. Y. Zhang, Y. Du, T. Yu, Z. Feng, J. Chen, Investigation of dextrinbased synergistic system with chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis, J. Pharm. Biomed. Anal., 164 (2019) 413-420.
  • 244. Y. Zhang, S. Du, Z. Feng, Y. Du, Z. Yan, Evaluation of synergistic enantioseparation systems with chiral spirocyclic ionic liquids as additives by capillary electrophoresis, Anal. Bioanal. Chem., 408 (2016) 2543-2555.
  • 245. J. Zhang, Y. Du, Q. Zhang, Y. Lei, Evaluation of vancomycinbased synergistic system with amino acid ester chiral ionic liquids as additives for enantioseparation of non-steroidal anti- inflamatory drugs by capillary electrophoresis, Talanta, 119 (2014) 193-201.
  • 246. L. Zuo, H. Meng, J. Wu, Z. Jiang, S. Xu, X. Guo, Combined use of ionic liquid and β-CD for enantioseparation of 12 pharmaceuticals using CE, J. Sep. Sci., 36 (2013) 517-523.
  • 247. Q. Zhang, Y. Du, S. Du, J. Zhang, Z. Feng, Y. Zhang, X. Li, Tetramethylammonium-lactobionate: A novel ionic liquid chiral selector based on saccharides in capillary electrophoresis, Electrophoresis, 36 (2015) 1216-1223.
  • 248. J. Zhang, Y. Du, Q. Zhang, J. Chen, G. Xu, T. Yu, X. Hua, Investigation of the synergistic effect with amino acidderived chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis, J. Chromatogr. A, 1316 (2013) 119-126.
  • 249. Q. Zhang, Y. Du, Evaluation of the enantioselectivity of glycogen-based synergistic system with amino acid chiral ionic liquids as additives in capillary electrophoresis, J. Chromatogr. A, 1306 (2013) 97-103.
  • 250. Y. Jin, C. Chen, L. Meng, J. Chen, M. Li, Z. Zhu, Simultaneous and sensitive capillary electrophoretic enantioseparation of three β-blockers with the combination of achiral ionic liquid and dual CD derivatives, Talanta, 89 (2012) 149-154.
  • 251. Y. Su, X. Mu, L. Qi, A new chiral ligand exchange capillary electrophoresis system based on Zn(II)-l-leucine complexes coordinating with β-cyclodextrin and its application in screening tyrosinase inhibitors, RSC Adv., 4 (2014) 55280-55285.
  • 252. J. Jiang, X. Mu, J. Qiao, Y. Su, L. Qi, New chiral ligand exchange capillary electrophoresis system with chiral amino amide ionic liquids as ligands, Talanta, 175 (2017) 451-456.
  • 253. H. Zhang, L. Qi, Y. Shen, J. Qiao, L. Mao, L-Lysine-derived ionic liquids as chiral ligands of Zn(II) complexes used in ligand-exchange CE, Electrophoresis, 34 (2013) 846-853.
  • 254. S. Xue, S. Ren, L. Wang, Q. Zhang, Evaluation of tetraalkylammonium amino acid ionic liquids as chiral ligands in ligand-exchange capillary electrophoresis, J. Chromatogr. A, 1611 (2020) 460579.
  • 255. B. Sun, X. Mu, L. Qi, Development of new chiral ligand exchange capillary electrophoresis system with amino acid ionic liquids ligands and its application in studying the kinetics of L-amino acid oxidase, Anal. Chim. Acta, 821 (2014) 97-102.
  • 256. H. Zhang, L. Qi, X. Mu, X. Zhou, D. Li, L. Mao, Influence of ionic liquids as electrolyte additives on chiral separation of dansylated amino acids by using Zn(II) complex mediated chiral ligand exchange CE, J. Sep. Sci., 36 (2013) 886-891.
  • 257. I.J. Stavrou, Z.S. Breitbach, C.P. Kapnissi-Christodoulou, Combined use of cyclofructans and an amino acid esterbased ionic liquid for the enantioseparation of huperzine A and coumarin derivatives in CE, Electrophoresis, 36 (2015) 3061-3068.
  • 258. Casado, A. Salgado, M. Castro-Puyana, M.Á. García, M.L. Marina, Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography Effect of amino acid chiral ionic liquids, J. Chromatogr. A, 1608 (2019) 460407.
  • 259. X. Zhu, C. Chen, J. Chen, G. Xu, Y. Du, X. Ma, X. Sun, Z. Feng, Z. Huang, Synthesis and application of tetramethylammoniumcarboxymethylated-β-cyclodextrin: A novel ionic liquid in capillary electrophoresis enantioseparation, J. Pharm. Biomed. Anal., 180 (2020) 113030.
  • 260. Xu, Y. Du, F. Du, J. Chen, T. Yu, Q. Zhang, J. Zhang, S. Du, Z. Feng, Establishment and Evaluation of the Novel Tetramethylammonium-L-Hydroxyproline Chiral Ionic Liquid Synergistic System Based on Clindamycin Phosphate for Enantioseparation by Capillary E l e c t r o p h o r e s i s , Chirality, 27 (2015) 598-604.
  • 261. D.L. Fedlheim, C.A. Foss, Foss, C. A., Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press, ISBN 9780824706043, October 26, (2001).
  • 262. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, Nanomedicine Nanotechnology, Biol. Med., 6 (2010) 257-262.
  • 263. L. Yang, C. Chen, X. Liu, J. Shi, G. Wang, L. Zhu, L. Guo, J.D. Glennon, N.M. Scully, B.E. Doherty, Use of cyclodextrinmodified gold nanoparticles for enantioseparations of drugs and amino acids based on pseudostationary phase-capillary electrochromatography, Electrophoresis, 31 (2010) 1697- 1705.
  • 264. W. Hu, T. Hong, X. Gao, Y. Ji, Applications of nanoparticle-modified stationary phases in capillary electrochromatography, TrAC-Trends Anal. Chem., 61 (2014) 29-39.
  • 265. T. Wang, Y. Cheng, Y. Zhang, J. Zha, J. Ye, Q. Chu, G. Cheng, β-cyclodextrin modified quantum dots as pseudo-stationary phase for direct enantioseparation based on capillary electrophoresis with laser-induced fluorescence detection, Talanta, 210 (2020) 120629.
  • 266. L-l. Fang, P. Wang, X-l. Wen, X. Guo, L. da Luo, J. Yu, X-j. Guo, Layer-by-layer self-assembly of gold nanoparticles/ thiols β-cyclodextrin coating as the stationary phase for enhanced chiral differentiation in open tubular capillary electrochromatography, Talanta, 167 (2017) 158-165.
  • 267. M. Li, X. Liu, F. Jiang, L. Guo, L. Yang, Enantioselective open-tubular capillary electrochromatography using cyclodextrin-modified gold nanoparticles as stationary phase, J. Chromatogr. A, 1218 (2011) 3725-3729.
  • 268. L. Fang, Y. Zhao, C. Wang, C. Wang, X. Han, P. Chen, L. Zhao, J. Wang, S. Li, Z. Jiang, Preparation of a thiols β ‐cyclodextring/ gold nanoparticles‐coated open tubular column for capillary electrochromatography enantioseparations, J. Sep. Sci., 43 (2020) 2209-2216.
  • 269. M. Li, M. Tarawally, X. Liu, X. Liu, L. Guo, L. Yang, G. Wang, Application of cyclodextrin-modified gold nanoparticles in enantioselective monolith capillary electrochromatography, Talanta, 109 (2013) 1-6.
  • 270. Y. Zhang, Y. Zhang, W. Chen, Y. Zhang, L. Zhu, P. He, Q. Wang, Enantiomeric separation of tryptophan by open-tubular microchip capillary electrophoresis using polydopamine/ gold nanoparticles conjugated DNA as stationary phase, Anal. Methods, 9 (2017) 3561-3568.
  • 271. Zhang, J. Qu, X. Lv, J. Zhang, L. Fang, A novel open‐tubular capillary electrochromatography using carboxymethyl‐β‐ cyclodextrin functionalized gold nanoparticles as chiral stationary phase, J. Sep. Sci., 43 (2020) 946-953.
  • 272. X. Yang, X. Sun, Z. Feng, Y. Du, J. Chen, X. Ma, X. Li, Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids, Microchim. Acta, 186 (2019) 1-8.
  • 273. Qu, J. Lei, L. Zhang, R. Ouyang, H. Ju, Molecularly imprinted magnetic nanoparticles as tunable stationary phase located in microfluidic channel for enantioseparation, J. Chromatogr. A, 1217 (2010) 6115-6121.
  • 274. L.-L. Wu, R.-P. Liang, J. Chen, J.-D. Qiu, Separation of chiral compounds using magnetic molecularly imprinted polymer nanoparticles as stationary phase by microchip capillary electrochromatography, Electrophoresis, 39 (2018) 356-362.
  • 275. X. Hua, Y. Du, J. Chen, G. Xu, T. Yu, Q. Zhang, Evaluation of the enantioselectivity of carbon nanoparticles-modified chiral separation systems using dextrin as chiral selector by capillary electrokinetic chromatography, Electrophoresis, 34 (2013) 1901-1907.
  • 276. X.N. Wang, R.P. Liang, X.Y. Meng, J.D. Qiu, One-step synthesis of mussel-inspired molecularly imprinted magnetic polymer as stationary phase for chip-based open tubular capillary electrochromatography enantioseparation, J. Chromatogr. A, 1362 (2014) 301-308.
  • 277. Zhang, Y. Du, S. Du, Evaluation of ionic liquids-coated carbon nanotubes modified chiral separation system with chondroitin sulfate E as chiral selector in capillary electrophoresis, J. Chromatogr. A, 1339 (2014) 185-191.
  • 278. X. Sun, J. Guo, T. Yu, Y. Du, Z. Feng, S. Zhao, Z. Huang, J. Liu, A novel coating method for CE capillary using carboxymethylΒ-cyclodextrin-modified magnetic microparticles as stationary for electrochromatography enantioseparation, Anal. Bioanal. Chem., 411 (2019) 1193-1202.
  • 279. L. Huang, Y.-T. Chen, Y.-X. Li, L.-S. Yu, Application of Chiral Ionic Liquid-Modified Gold Nanoparticles in the Chiral Recognition of Amino Acid Enantiomers, Appl. Spectrosc., 70 (2016) 1649-1654.
  • 280. X. Dong, R. Wu, J. Dong, M. Wu, Y. Zhu, H. Zou, A mesoporous silica nanoparticles immobilized open‐tubular capillary column with a coating of cellulose tris(3,5‐dimethylphenyl‐ carbamate) for enantioseparation in CEC, Electrophoresis, 29 (2008) 3933-3940.
  • 281. Z.S. Gong, L.P. Duan, A.N. Tang, Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-βcyclodextrin (CM-β-CD) as a chiral selector, Microchim. Acta, 182 (2015) 1297-1304.
  • 282. C.-Y. Yue, G.-S. Ding, F.-J. Liu, A.-N. Tang, Water-compatible surface molecularly imprinted silica nanoparticles as pseudostationary phase in electrokinetic chromatography for the enantioseparation of tryptophan, J. Chromatogr. A, 1311 (2013), 176-182.
  • 283. X. Sun, Y. Du, S. Zhao, Z. Huang, Z. Feng, Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly (glycidyl methacrylate) nanoparticles, Microchim. Acta, 186 (2019) 1-7.
  • 284. C. Aydoğan, V. Karakoç, F. Yılmaz, A. Denizli, Enantioseparation of Ofloxacin by Ligand Exchange Capillary Electrophoresis Using L-Histidine Modified Nanoparticles as Chiral Ligand, Hacettepe J. Biol. & Chem., 41 (1) (2013) 29-36.
  • 285. Svec, E.C. Peters, D. Sýkora, J.M.J. Fréchet, Design of the monolithic polymers used in capillary electrochromatography columns, J. Chromatogr. A, 887 (2000) 3-29.
  • 286. E.F. Hilder, F. Svec, J.M.J. Fréchet, Development and application of polymeric monolithic stationary phases for capillary electrochromatography, J. Chromatogr. A, 1044 (2004) 3-22.
  • 287. J.J. Meyers, A.I. Liapis, Network modeling of the convective flow and diffusion ofmolecules adsorbing in monoliths and in porous particles packed in a chromatographic column, J. Chromatogr. A, (1999) 3-23.
  • 288. M. Wu, R. Wu, Z. Zhang, H. Zou, Preparation and application of organic-silica hybrid monolithic capillary columns, Electrophoresis, 32 (2011) 105-115.
  • 289. Ye, S. Wang, S. Zhao, Preparation and characterization of mixed-mode monolithic silica column for capillary electrochromatography, J. Chromatogr. A, 1216 (2009) 8845-8850.
  • 290. Y. Xue, X. Gu, Y. Wang, C. Yan, Recent advances on capillary columns, detectors, and two-dimensional separations in capillary electrochromatography, Electrophoresis, 36 (2015) 124-134.
  • 291. N. Tanaka, H. Kobayashi, N. Ishizuka, H. Minakuchi, K. Nakanishi, K. Hosoya, T. Ikegami, Monolithic silica columns for high-efficiency chromatographic separations, J. Chromatogr. A, 965 (2002) 35-49.
  • 292. M-L. Hsieh, L-K. Chau, Y-S. Hon, Single-step approach for fabrication of vancomycin-bonded silica monolith as chiral stationary phase, J. Chromatogr. A, 1358 (2014) 208-216.
  • 293. L.L. Hench, J.K. West, The Sol-Gel Process. Chem. Rev. 1990, 90, 33-72.
  • 294. J. Nawrocki, M. Rigney, A. McCormick, P.W. Carr, Chemistry of zirconia and its use in chromatography, J. Chromatogr. A, 657 (1993) 229-282.
  • 295. A.P. Kumar, J.H. Park, Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography, J. Chromatogr. A, 1217 (2010) 4494-4500.
  • 296. S. Dixit, J.H. Park, Enantioseparation of basic chiral drugs on a carbamoylated erythromycin-zirconia hybrid monolith using capillary electrochromatography, J. Chromatogr. A, 1416 (2015) 129-136.
  • 297. S. Dixit, I.S. Lee, J.H. Park, Carbamoylated azithromycin incorporated zirconia hybrid monolith for enantioseparation of acidic chiral drugs using non-aqueous capillary electrochromatography, J. Chromatogr. A, 1507 (2017) 132- 140.
  • 298. L.N. Tran, S. Dixit, J.H. Park, Enantioseparation of basic chiral compounds on a clindamycin phosphate-silica/zirconia hybrid monolith by capillary electrochromatography, J. Chromatogr. A, 1356 (2014) 289-293.
  • 299. L.N. Tran, J.H. Park, Enantiomer separation of acidic chiral compounds on a quinine-silica/zirconia hybrid monolith by capillary electrochromatography, J. Chromatogr. A, 1396 (2015) 140-147.
  • 300. M. Kim, J.H. Park, Enantioseparation of chiral acids and bases on a clindamycin phosphate-modified zirconia monolith by capillary electrochromatography, J. Chromatogr. A, 1251 (2012) 244-248.
  • 301. A.P. Kumar, J.H. Park, Fast separations of chiral β-blockers on a cellulose tris(3,5-dimethylphenylcarbamate)- coated zirconia monolithic column by capillary electrochromatography, J. Chromatogr. A, 1218 (2011) 5369-5373.
  • 302. L.N. Tran, J.-A. Jeong, J.H. Park, Enantiomer Separation of Acidic Chiral Compounds on a tert -ButylcarbamoylquinineSilica Hybrid Monolith by Capillary Electrochromatography. Bull. Korean Chem. Soc., 37 (2016) 1050-1056.
  • 303. L.N. Tran, J.-A. Jeong, J.H. Park, Enantiomer Separation of Acidic Chiral Compounds on a tert -ButylcarbamoylquinineSilica Hybrid Monolith by Capillary Electrochromatography, Bull. Korean Chem. Soc., 37 (2016) 1050-1056.
  • 304. Al-Hussin, R.I. Boysen, K. Saito, M.T.W. Hearn, Preparation and electrochromatographic characterization of new chiral β-cyclodextrin poly(acrylamidopropyl) porous layer open tubular capillary columns, J. Chromatogr. A, 1358 (2014) 199-207.
  • 305. L. Fang, J. Yu, Z. Jiang, X. Guo, Preparation of a β-cyclodextrinbased open-tubular capillary electrochromatography column and application for enantioseparations of ten basic drugs, PLoS ONE 11 (2016): e0146292.
  • 306. Hongjun, P. Su, M.U. Farooq, Y. Yang, Microwave-Assisted Preparation of a β-Cyclodextrin-Based Stationary Phase for Open Tubular Capillary Electrochromatography, Anal. Lett., 43 (2010) 2372-2380.
  • 307. Yuan, G. Ding, Enantioseparations in capillary electrochromatography using sulfated poly b -cyclodextrinmodi fi ed silica-based monolith as stationary phase, Methods Mol. Biol., 970 (2013) 489-503.
  • 308. L. Zhou, J. Lun, Y. Liu, Z. Jiang, X. Di, X. Guo, In situ immobilization of sulfated-β-cyclodextrin as stationary phase for capillary electrochromatography enantioseparation, Talanta, 200 (2019) 1-8.
  • 309. K. Szwed, J. Ou, G. Huang, H. Lin, Z. Liu, H. Wang, H. Zou, Preparation of cyclodextrin-modified monolithic hybrid columns for the fast enantioseparation of hydroxy acids in capillary liquid chromatography, J. Sep. Sci., 39 (2016) 1110- 1117.
  • 310. Ghanem, F.G. Adly, Y. Sokerik, N.Y. Antwi, M.A. Shenashen, S.A. El-Safty, Trimethyl-β-cyclodextrin-encapsulated monolithic capillary columns: Preparation, characterization and chiral nano-LC application, Talanta, 169 (2017) 239-248.
  • 311. A. Ghanem, M. Ahmed, H. Ishii, T. Ikegami, Immobilized β-cyclodextrin-based silica vs polymer monoliths for chiral nano liquid chromatographic separation of racemates, Talanta, 132 (2015) 301-314.
  • 312. J. Guo, Y. Xiao, Y. Lin, Q. Zhang, Y. Chang, J. Crommen, Z. Jiang, Influence of the linking spacer length and type on the enantioseparation ability of β-cyclodextrin functionalized monoliths, Talanta, 152 (2016) 259-268.
  • 313. Zhang, J. Guo, F. Wang, J. Crommen, Z. Jiang, Preparation of a β-cyclodextrin functionalized monolith via a novel and simple one-pot approach and application to enantioseparations, J. Chromatogr. A, 1325 (2014) 147-154.
  • 314. Q. Zhang, J. Guo, Y. Xiao, J. Crommen, Z. Jiang, Comparative evaluation of a one-pot strategy for the preparation of β-cyclodextrin-functionalized monoliths: Effect of the degree of amino substitution of β-cyclodextrin on the column performance, J. Sep. Sci., 38 (2015) 1813-1821.
  • 315. Z. Zhang, M. Wu, R. Wu, J. Dong, J. Ou, H. Zou, Preparation of perphenylcarbamoylated β- cyclodextrin-silica hybrid monolithic column with “one-pot” approach for enantioseparation by capillary liquid chromatography, Anal. Chem., 83 (2011) 3616-3622.
  • 316. M. Deng, M. Li, Y. Zhao, Z. Jiang, X. Guo, A novel one-pot strategy to prepare β-cyclodextrin functionalized capillary monoliths for enantioseparation of basic drugs, Talanta, 189 (2018) 458-466.
  • 317. R. Chen, C. Lin, H. Lyu, X. Lin, Z. Xie, Highly efficient preparation of β-CD-based chiral monolithic c o l u m n by “one-pot” hydroxymethyl polycondensation for enantioseparation in capillary liquid chromatography, J. Chromatogr. A, 1616 (2020) 460781.
  • 318. P. Zhang, J. Wang, H. Yang, L. Su, Y. Xiong, F. Ye, Facile onepot preparation of chiral monoliths with a well-defined framework based on the thiol-ene click reaction for capillary liquid chromatography, RSC Adv., 6 (2016) 24835-24842.
  • 319. W. Bragg, S.A. Shamsi, A novel positively charged achiral co-monomer for β-cyclodextrin monolithic stationary phase: Improved chiral separation of acidic compounds using capillary electrochromatography coupled to mass spectrometry, J. Chromatogr. A, 1267 (2012) 144- 155.
  • 320. L. Zhou, B. Liu, J. Guan, Z. Jiang, X. Guo, Preparation of sulfobutylether β-cyclodextrin-silica hybrid monolithic column, and its application to capillary electrochromatography of chiral compounds, J. Chromatogr. A, 1620 (2020) 460932.
  • 321. Aydoǧan, A. Denizli, Chiral separation-based ligand exchange by open-tubular capillary electrochromatography, Anal. Biochem., 447 (2014) 55-57.
  • 322. Y. Lin, J. Guo, H. Lin, J. Wang, G.W. Somsen, J. Crommen, Z. Jiang, Effect of fabrication strategy on the enantioseparation performance of β-cyclodextrin-functionalized polymethacrylate monoliths: A comparative evaluation, J. Sep. Sci., 40 (2017) 3754-3762.
  • 323. Noel Echevarria, E.J. Carrasco-Correa, S. Keunchkarian, M. Reta, J.M. Herrero-Martinez, Photografted methacrylatebased monolithic columns coated with cellulose tris(3,5- dimethylphenylcarbamate) for chiral separation in CEC, J. Sep. Sci., 41 (2018) 1424-1432.
  • 324. Aydoğan, F. Yılmaz, D. Çimen, L. Uzun, A. Denizli, Enantioseparation of aromatic amino acids using CEC monolith with novel chiral selector, N -methacryloyl- l -histidine methyl ester, Electrophoresis, 34 (2013) 1908-1914.
  • 325. C. Aydogan, A. Denizli, Electrochromatographic Enantioseparation of Amino Acids Using Polybutylmethacrylate-based Chiral Monolithic Column by Capillary Electrochromatography, Chirality, 24 (2012) 606- 609.
  • 326. Aydoğan, Z. El Rassi, Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography, J. Chromatogr. A, 1445 (2016) 55-61.
  • 327. Aydoğan, Z. El Rassi, Monolithic stationary phases with incorporated fumed silica nanoparticles. Part II. Polymethacrylate-based monolithic column with “covalently” incorporated modified octadecyl fumed silica nanoparticles for reversed-phase chromatography, J. Chromatogr. A, 1445 (2016) 62-67.
  • 328. Xu, R. Mo, C. Jin, X. Cui, R. Bai, Y. Ji, Mesoporous silica nanoparticles incorporated hybrid monolithic stationary phase immobilized with pepsin for enantioseparation by capillary electrochromatography, J. Pharm. Biomed. Anal., 140 (2017) 190-198.
  • 329. Miao, R. Bai, S. Xu, T. Hong, Y. Ji, Carboxylated single-walled carbon nanotube-functionalized chiral polymer monoliths for affinity capillary electrochromatography, J. Chromatogr. A, 1487 (2017) 227-234.
  • 330. Y. Li, X. Lin, S. Qin, L. Gao, Y. Tang, S. Liu, Y. Wang, β‐ Cyclodextrin‐modified covalent organic framework as chiral stationary phase for the separation of amino acids and β‐ blockers by capillary electrochromatography, Chirality, 32 (2020) 1008-1019.