RAMAN SPEKTROSKOPİSİNİN ET KALİTESİ VE GÜVENLİĞİNİN BELİRLENMESİNDE KULLANIMI

Et ve ürünlerinin güvenliği ve kalitesi, insan beslenmesi, sağlığı ve yaşam kalitesi açısından oldukça önemlidir. Son yıllarda et endüstrisinin hızlı büyümesi ayrıca beslenme ve gıda güvenliğine olan ilginin artması, gıdaların işleme ve depolama sırasında hızlı bir şekilde analiz edilmesi zorunluluğunu ortaya koymaktadır. Geleneksel analiz tekniklerinin, zaman alıcı, pahalı, örneklere zarar veren ve profesyonel operatörlere ihtiyaç duyan bazı dezavantajları bulunmaktadır. Günümüzde Raman spektroskopisi (RS), parmak izi potansiyeli, özgüllüğü, hızı, tahribatsız ve taşınabilir olması nedeniyle et ve ürünlerinin analizinde giderek daha fazla ilgi görmektedir. Bu derleme çalışması, RS tekniğinin prensibini ve tarihsel gelişimini, çeşitli RS tekniklerinin özelliklerini ve RS’nin et kalitesi ve güvenlik analizindeki son gelişmelere ve uygulamalara genel bir bakışını özetlemektedir. Ayrıca RS’nin et endüstrisindeki mevcut zorlukları ile gelecekteki eğilimler hakkında da bilgi sunmaktadır.

USE OF RAMAN SPECTROSCOPY IN DETERMINING THE QUALITY AND SAFETY OF MEAT

The safety and quality of meat and its products are very important regarding people's nutrition, health, and quality of life. In recent years, the rapid growth of the meat industry and the increasing interest in nutrition and food safety revealed the necessity of analyzing foods quickly during processing and storage. Traditional analysis techniques have some disadvantages, including time-consuming, expensive, damage to samples, and the need for professional operators. Nowadays, Raman spectroscopy (RS) is drawing more and more attention in the analysis of meat and its products due to its potential in fingerprint, specificity, speed, non-destructive, and portable. This review summarizes the principle and development history of the RS technique, the characteristics of the various RS techniques, and an overview of the recent advances and applications of RS in meat quality and safety analysis. It also provides insight into the current challenges and future trends of RS in the meat industry.

___

  • Akçe, M. A., Kadıoğlu, Y. K. (2020). Raman spektroskopisinin ilkeleri ve mineral tanımlamalarında kullanılması. Nevşehir Bilim ve Teknoloji Dergisi, 9(2), 99-115, doi: 10.17100/nevbiltek.778678.
  • Bell, S. E., Charron, G., Cortés, E., Kneipp, J., de la Chapelle, M. L., Langer, J., Procházka, M., Tran, V., Schlücker, S. (2020). Towards reliable and quantitative surface‐enhanced Raman scattering (SERS): From key parameters to good analytical practice. Angewandte Chemie International Edition, 59(14), 5454-5462, doi: 10.1002/anie.201908154.
  • Berhe, D. T., Engelsen, S. B., Hviid, M. S., Lametsch, R. (2014). Raman spectroscopic study of effect of the cooking temperature and time on meat proteins. Food Research International, 66, 123-131, doi: 10.1016/j.foodres.2014.09.010.
  • Bērziņš, K., Fraser-Miller, S. J., Gordon, K. C. (2021). Recent advances in low-frequency Raman spectroscopy for pharmaceutical applications. International Journal of Pharmaceutics, 592, 120034, doi: 10.1016/j.ijpharm.2020.120034.
  • Bitar, R. A., Martinho, H. D. S., Tierra-Criollo, C. J., Zambelli Ramalho, L. N., Netto, M. M., Martin, A. A. (2006). Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy. Journal of Biomedical Optics, 11(5), 054001-1-054001-8, doi: 10.1117/1.2363362.
  • Breuch, R., Klein, D., Siefke, E., Hebel, M., Herbert, U., Wickleder, C., Kaul, P. (2020). Differentiation of meat-related microorganisms using paper-based surface-enhanced Raman spectroscopy combined with multivariate statistical analysis. Talanta, 219, 121315, doi: 10.1016/j.talanta.2020.121315.
  • Buhrke, D., Hildebrandt, P. (2019). Probing structure and reaction dynamics of proteins using time-resolved resonance Raman spectroscopy. Chemical Reviews, 120(7), 3577-3630, doi: 10.1021/acs.chemrev.9b00429.
  • Butler, H. J., Ashton, L., Bird, B., Cinque, G., Curtis, K., Dorney, J., Esmonde-White, K., Fullwood, N. J., Gardner, B., Martin-Hirsch, P. L., Walsh, M. J., McAinsh, M. R., Stone, N., Martin, F. L. (2016). Using Raman spectroscopy to characterize biological materials. Nature Protocols, 11(4), 664-687, doi: 10.1038/nprot.2016.036.
  • Cao, Y., Sun, M. (2022). Tip-enhanced Raman spectroscopy. Reviews in Physics, 8, 100067, doi: 10.1016/j.revip.2022.100067.
  • Das, R. S., Agrawal, Y. K. (2011). Raman spectroscopy: Recent advancements, techniques and applications. Vibrational Spectroscopy, 57(2), 163-176, doi: 10.1016/j.vibspec.2011.08.003.
  • Gao, F., Ben-Amotz, D., Yang, Z., Han, L., Liu, X. (2021). Complementarity of FT-IR and Raman spectroscopies for the species discrimination of meat and bone meals related to lipid molecular profiles. Food Chemistry, 345, 128754, doi: 10.1016/j.foodchem.2020.128754.
  • Gremlich, H. U., Yan, B. (2000). Infrared and Raman Spectroscopy of Biological Materials. 1st Edition, CRC press, Boca Raton, USA, 600 p.
  • Hadziç, M. (2022). Raman ve X-Ray flüoresans spektroskopilerin fizik ve arkeoloji uygulamaları. Trakya Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı Doktora Tezi, Edirne. Türkiye, 113 s.
  • Hassoun, A., Carpena, M., Prieto, M. A., Simal-Gandara, J., Özogul, F., Özogul, Y., Emir Çoban, Ö., Guðjónsdóttir, M., Barba, F. J., Marti-Quijal, F. J., Jambrak, A. R., Maltar-Strmecki, N., Kljusuric, J. G., Regenstein, J. M. (2020). Use of spectroscopic techniques to monitor changes in food quality during application of natural preservatives: A review. Antioxidants, 9(9), 882, doi: 10.3390/antiox9090882.
  • He, H., Sun, D. W., Pu, H., Chen, L., Lin, L. (2019). Applications of Raman spectroscopic techniques for quality and safety evaluation of milk: A review of recent developments. Critical Reviews in Food Science and Nutrition, 59(5), 770-793, doi: 10.1080/10408398.2018.1528436.
  • He, Y., Xu, W., Qu, M., Zhang, C., Wang, W., Cheng, F. (2022). Recent advances in the application of Raman spectroscopy for fish quality and safety analysis. Comprehensive Reviews in Food Science and Food Safety, 21(4), 3647-3672, doi: 10.1111/1541-4337.12968.
  • Ilchenko, O., Pilgun, Y., Kutsyk, A., Bachmann, F., Slipets, R., Todeschini, M., Okeyo, P. O., Poulsen, H. F., Boisen, A. (2019). Fast and quantitative 2D and 3D orientation mapping using Raman microscopy. Nature Communications, 10(1), 5555, doi: 10.1038/s41467-019-13504-8.
  • Jaafreh, S., Valler, O., Kreyenschmidt, J., Günther, K., Kaul, P. (2019). In vitro discrimination and classification of microbial flora of poultry using two dispersive Raman spectrometers (microscope and Portable Fiber-Optic systems) in tandem with chemometric analysis. Talanta, 202, 411-425, doi: 10.1016/j.talanta.2019.04.082.
  • Jankowiak, H., Cebulska, A., Bocian, M. (2021). The relationship between acidification (pH) and meat quality traits of polish white breed pigs. European Food Research and Technology, 247(11), 2813-2820, doi: 10.1007/s00217-021-03837-4.
  • Kang, Z. L., Li, X., Ma, H. J. (2017). Effect of the levels of transglutaminase in frankfurters: A physical-chemical and Raman spectroscopy study. CyTA - Journal of Food, 15(1), 75-80, doi: 10.1080/19476337.2016.1214928.
  • Karwowska, M., Stadnik, J., Stasiak, D. M., Wójciak, K., Lorenzo, J. M. (2021). Strategies to improve the nutritional value of meat products: Incorporation of bioactive compounds, reduction or elimination of harmful components and alternative technologies. International Journal of Food Science and Technology, 56(12), 6142-6156, doi: 10.1111/ijfs.15060.
  • Katemala, S., Molee, A., Thumanu, K., Yongsawatdigul, J. (2021). Meat quality and Raman spectroscopic characterization of Korat hybrid chicken obtained from various rearing periods. Poultry Science, 100(2), 1248-1261, doi: 10.1016/j.psj.2020.10.027.
  • Kuhar, N., Sil, S., Umapathy, S. (2021). Potential of Raman spectroscopic techniques to study proteins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 258, 119712, doi: 10.1016/j.saa.2021.119712.
  • Li, Y. C., Liu, S. Y., Meng, F. B., Liu, D. Y., Zhang, Y., Wang, W., Zhang, J. M. (2020). Comparative review and the recent progress in detection technologies of meat product adulteration. Comprehensive Reviews in Food Science and Food Safety, 19(4), 2256-2296, doi: 10.1111/1541-4337.12579.
  • Ma, X., Xu, X., Xia, Y., Wang, Z. (2018). SERS aptasensor for Salmonella typhimurium detection based on spiny gold nanoparticles. Food Control, 84, 232-237, doi: 10.1016/ j.foodcont.2017.07.016.
  • Malard, L. M., Lafeta, L., Cunha, R. S., Nadas, R., Gadelha, A., Cançado, L. G., Jorio, A. (2021). Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS. Physical Chemistry Chemical Physics, 23(41), 23428-23444, doi: 10.1039/d1cp03240b.
  • Mishra, M. (2022). Spectroscopic techniques for the analysis of food quality, chemistry, and function. In: Advanced Spectroscopic Techniques for Food Quality, Shukla, A. K. (ed.), Royal Society of Chemistry, the UK, pp. 1-22.
  • Monago-Maraña, O., Wold, J. P., Rødbotten, R., Dankel, K. R., Afseth, N. K. (2021). Raman, near-infrared and fluorescence determination of collagen content in ground spectroscopy for meat and poultry by-products. LWT-Food Science and Technology, 140, 110592, doi: 10.1016/j.lwt.2020.110592.
  • Nache, M., Hinrichs, J., Scheier, R., Schmidt, H., Hitzmann, B. (2016). Prediction of the pH as indicator of porcine meat quality using Raman spectroscopy and metaheuristics. Chemometrics and Intelligent Laboratory Systems, 154, 45-51, doi: 10.1016/j.chemolab.2016.03.011.
  • Nicolson, F., Kircher, M. F., Stone, N., Matousek, P. (2021). Spatially offset Raman spectroscopy for biomedical applications. Chemical Society Reviews, 50(1), 556-568, doi: 10.1039/d0cs00855a.
  • Notingher, I., Verrier, S., Haque, S., Polak, J. M., Hench, L. L. (2003). Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells. Biopolymers: Original Research on Biomolecules, 72(4), 230-240, doi: 10.1002/bip.10378.
  • Nunes, K. M., Andrade, M. V. O., Almeida, M. R., Fantini, C., Sena, M. M. (2019). Raman spectroscopy and discriminant analysis applied to the detection of frauds in bovine meat by the addition of salts and carrageenan. Microchemical Journal, 147, 582-589, doi: 10.1016/j.microc.2019.03.076.
  • Odeyemi, O. A., Alegbeleye, O. O., Strateva, M., Stratev, D. (2020). Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety, 19(2), 311-331, doi: 10.1111/1541-4337.12526.
  • Orlando, A., Franceschini, F., Muscas, C., Pidkova, S., Bartoli, M., Rovere, M., Tagliaferro, A. (2021). A comprehensive review on Raman spectroscopy applications. Chemosensors, 9(9), 262, doi: 10.3390/chemosensors9090262.
  • Pchelkina, V. A., Chernukha, I. M., Fedulova, L. V., Ilyin, N. A. (2022). Raman spectroscopic techniques for meat analysis: A review. Theory and Practice of Meat Processing, 7(2), 97-111, doi: 10.21323/2414-438X-2022-7-2-97-111.
  • Qu, C., Li, Y., Du, S., Geng, Y., Su, M., Liu, H. (2022). Raman spectroscopy for rapid fingerprint analysis of meat quality and security: Principles, progress and prospects. Food Research International, 161, 111805, doi: 10.1016/j.foodres.2022.111805.
  • Robert, B. (2009). Resonance Raman spectroscopy. Photosynthesis Research, 101, 147-155, doi: 10.1007/s11120-009-9440-4.
  • Shao, J. H., Zou, Y. F., Xu, X. L., Wu, J. Q., Zhou, G. H. (2011). Evaluation of structural changes in raw and heated meat batters prepared with different lipids using Raman spectroscopy. Food Research International, 44(9), 2955-2961, doi: 10.1016/j.foodres.2011.07.003.
  • Shao, F., Zenobi, R. (2019). Tip-enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials. Analytical and Bioanalytical Chemistry, 411, 37-61, doi: 10.1007/s00216-018-1392-0.
  • Shipp, D. W., Sinjab, F., Notingher, I. (2017). Raman spectroscopy: techniques and applications in the life sciences. Advances in Optics and Photonics, 9(2), 315-428, doi: 10.1364/AOP.9.000315.
  • Silge, A., Weber, K., Cialla-May, D., Müller-Bötticher, L., Fischer, D., Popp, J. (2022). Trends in pharmaceutical analysis and quality control by modern Raman spectroscopic techniques. TrAC Trends in Analytical Chemistry, 153, 116623, doi: 10.1016/j.trac.2022.116623.
  • Smith, E., Dent, G. (2019). Modern Raman Spectroscopy: A Practical Approach. 1st Edition, John Wiley & Sons Ltd, the UK, 240 p.
  • Stone, N., Kendall, C., Shepherd, N., Crow, P., Barr, H. (2002). Near‐infrared Raman spectroscopy for the classification of epithelial pre‐cancers and cancers. Journal of Raman Spectroscopy, 33(7), 564-573, doi: 10.1002/jrs.882.
  • Sun, H., Song, C., Lin, X., Gao, X. (2022). Identification of meat species by combined laser-induced breakdown and Raman spectroscopies. Spectrochimica Acta Part B: Atomic Spectroscopy, 194, 106456, doi: 10.1016/j.sab.2022.106456.
  • Tan, A., Zhao, Y., Sivashanmugan, K., Squire, K., Wang, A. X. (2019). Quantitative TLC-SERS detection of histamine in seafood with support vector machine analysis. Food Control, 103, 111-118, doi: 10.1016/j.foodcont.2019.03.032.
  • Taylor, E. A., Donnelly, E. (2020). Raman and Fourier transform infrared imaging for characterization of bone material properties. Bone, 139, 115490, Doi:.2020. 10.1016/j.bone 115490.
  • Teixeira, A., Rodrigues, S. (2021). Consumer perceptions towards healthier meat products. Current Opinion in Food Science, 38, 147-154, doi: 10.1016/j.cofs.2020.12.004.
  • Urashima, S. H., Morita, M., Komatani, S., Yui, H. (2023). Non-destructive estimation of the cation composition of natural carbonates by micro-Raman spectroscopy. Analytica Chimica Acta, 1242, 340798, doi: 10.1016/j.aca.2023.340798.
  • Wang, K., Li, Z., Li, J., Lin, H. (2021). Raman spectroscopic techniques for nondestructive analysis of agri-foods: A state-of-the-art review. Trends in Food Science & Technology, 118, 490-504, doi: doi: 10.1016/j.tifs.2021.10.01.
  • Wu, X., Liang, X., Wang, Y., Wu, B., Sun, J. (2022). Non-destructive techniques for the analysis and evaluation of meat quality and safety: A review. Foods, 11(22), 3713, doi: 10.3390/foods11223713.
  • Xu, Y., Zhong, P., Jiang, A., Shen, X., Li, X., Xu, Z., Shen, Y., Sun, Y., Lei, H. (2020). Raman spectroscopy coupled with chemometrics for food authentication: A review. TrAC Trends in Analytical Chemistry, 131, 116017, doi: 10.1016/j.trac.2020.116017.
  • Yang, K., Zhou, Y., Guo, J., Feng, X., Wang, X., Wang, L., Ma, J., Sun, W. (2020). Low frequency magnetic field plus high pH promote the quality of pork myofibrillar protein gel: A novel study combined with low field NMR and Raman spectroscopy. Food Chemistry, 326, 126896, doi: 10.1016/j.foodchem.2020.126896.
  • Yilmaz, H., Yilmaz, D., Taskin, I. C., Culha, M. (2022). Pharmaceutical applications of a nanospectroscopic technique: Surface-enhanced Raman spectroscopy. Advanced Drug Delivery Reviews, 184, 114184, doi: 10.1016/j.addr.2022.114184.
  • Zhang, D., Pu, H., Huang, L., Sun, D. W. (2021). Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: Fundamentals and recent applications. Trends in Food Science & Technology, 109, 690-701, doi: 10.1016/j.tifs.2021.01.058.
  • Zhao, J., Liu, P., Yuan, H., Peng, Y., Hong, Q., Liu, M. (2016). Rapid detection of tetracycline residues in duck meat using surface enhanced raman spectroscopy. Journal of Spectroscopy, 2016, 1845237, doi: 10.1155/2016/1845237.
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: 6
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR
Sayıdaki Diğer Makaleler

YAŞ GLÜTEN MİKTARININ BUĞDAY UNU HAMURUNUN DOĞRUSAL OLMAYAN VİSKOELASTİK ÖZELLİKLERİ ÜZERİNDEKİ ETKİSİ

Gamze YAZAR

VALİDE EDİLMİŞ BİR LC-MS/MS METODUYLA ASMA YAPRAKLARINDA PESTİSİT KALINTILARININ BELİRLENMESİ

Tuba ZORLU ÜNLÜ, Semra TOPUZ, Mustafa BAYRAM, Tarık BALKAN, Cemal KAYA

PROPOLİSİN BİYOAKTİF BİLEŞENLERİ ÜZERİNE EKSTRAKSİYON YÖNTEMLERİNİN VE EKSTRAKSİYON DEĞİŞKENLERİNİN ETKİLERİ

Harun Reşit ÖZDAL, Emine NAKİLCİOĞLU, Semih ÖTLEŞ

KURUTULMUŞ ET İLE ZENGİNLEŞTİRİLMİŞ TAM BUĞDAY UNLU GALETALARDA IN VITRO DEMİR BİYOERİŞİLEBİLİRLİĞİNİN SAPTANMASI

Emine ERDAĞ AKCA, Özlem ÇAĞINDI, Ergun KÖSE

PROBİYOTİKLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN YÖNTEMLER VE GIDA TEKNOLOJİSİNDE UYGULAMALARI

Müzeyyen KALFAZADE, Kübra Sultan ÖZDEMİR

PİYASADA TÜKETİME SUNULAN AYÇİÇEK VE MISIRÖZÜ YAĞLARINDA AFLATOKSİN VARLIĞININ ARAŞTIRILMASI

İşil VAR, Ali TEKİN

KATIK KEŞİ ÜRETİMİ İÇİN EN UYGUN KURUMADDE VE YAĞ ORANININ BELİRLENMESİ

Kübra ÖZCAN, Hayri COŞKUN

YUMUŞAK BEYAZ PEYNİR SALAMURASINDA KULLANILAN STABİLİZÖRLERİN PEYNİRLERİN AROMA PROFİLİ ÜZERİNE ETKİLERİ

Çağla ÖZBEK, Nuray GÜZELER

POTANSİYEL BİR FONKSİYONEL GIDA OLARAK FARKLI TURP (RAPHANUS SATIVUS) ÇEŞİTLERİNE AİT TOZLARIN KİMYASAL VE FONKSİYONEL ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ

Tekmile CANKURTARAN KÖMÜRCÜ

RAMAN SPEKTROSKOPİSİNİN ET KALİTESİ VE GÜVENLİĞİNİN BELİRLENMESİNDE KULLANIMI

Hilal TOMBULOĞLU, Fatih ÖZ, Sadettin TURHAN