PİYASADA TÜKETİME SUNULAN AYÇİÇEK VE MISIRÖZÜ YAĞLARINDA AFLATOKSİN VARLIĞININ ARAŞTIRILMASI

Genel olarak bütün tarımsal ürünler küflenmeye bağlı bozulmalara maruz kalabilmektedir. Toprakta ve havada yaygın olarak bulunan küf sporları, uygun sıcaklık ve su aktivitesi değerlerinde bu ürünlere bulaştıklarında ürünleri bozabilmekte, hatta ürettikleri mikotoksinlerle sağlık açısından risk yaratabilmektedirler. Tarımsal ürünlerimizden olan yağlı tohumlar da yapıları itibari ile küflenmeye ve küfler tarafından üretilen mikotoksinler ile kontamine olmaya uygun gıdalardır. Endüstriyel olarak, ayçiçeği ve mısırözü gibi yağlı tohumlardan yağ eldesinde çeşitli ekstraksiyon yöntemlerinden yararlanılmakta ve elde edilen bu ham yağlara sonrasında degumming, nötralizasyon ve ağartma proseslerini içeren rafinasyon işlemleri uygulanmaktadır. Bugüne kadar yağ eldesinde uygulanan rafinasyon işlemlerinin hammaddede bulunan mikotoksinlerin yağdaki miktarını düşürdüğü ve yağların bu anlamda bir risk taşımadığı düşüncesi yaygındı. Son zamanlarda yapılan sınırlı sayıdaki çalışmalar, yağlı tohumdan başlayarak rafine yağ eldesine kadar devam eden proses boyunca uygulanan işlemlerin ancak mikotoksin düzeyini düşürdüğünü fakat düşük düzeylerde de olsa yağlarda mikotoksin bulunabileceğini ve yine sınırlı sayıda yapılmış piyasa taramalarını içeren çalışmalar rafine yağların farklı düzeylerde mikotoksin içerdiğini göstermiştir. Bu çalışmada ilk kez, ülkemiz marketlerinde rafine olarak satışa sunulan ayçiçek yağı ve mısırözü yağında aflatoksin varlığı araştırılmış ve ülkemiz piyasasındaki durum değerlendirilmiştir. Çalışmada ülkemiz piyasasından toplanan 50 rafine ayçiçek yağı örneğinin 16 (%32)’sında 0.06-0.198 μg/kg aralığında, 44 rafine mısır özü yağı örneğinin ise 28 (%63.63)’inde 0.03-0.144 μg/kg aralığında toplam aflatoksin varlığı tespit edilirken, 16 rafine ayçiçek yağı örneğinin 5’inde 0.06-0.082 μg/kg aralığında, 28 rafine mısır özü yağı örneğinin ise 4’ünde 0.014-0.032 μg/kg aralığında AFB1 tespit edilmiştir. Çalışmada kullanılan örneklerin bir kısmında her ne kadar aflatoksin varlığı tespit edilmişse de belirlenen miktarlar uluslararası bitkisel yağlar için bildirilen toksin kriterlerinin çok altında bulunmuştur.

INVESTIGATION OF THE PRESENCE OF AFLATOXIN IN SUNFLOWER AND CORN OILS OFFERED FOR CONSUMPTION IN THE MARKET

In general, all agricultural products may be subject to spoilage due to mold. Mold spores, which are commonly found in soil and air, can spoil products when they contaminate these products at appropriate temperature and water activity values, and can even pose a health risk with the mycotoxins. Oilseeds, one of our agricultural products, are foods that are suitable for mold growth and contamination with mycotoxins produced by molds due to their structure. Industrially, various extraction methods are used to obtain oil from oilseeds such as sunflower and corn, and refining processes including degumming, neutralization and bleaching processes are applied to these crude oils. So far, it was widely thought that the refining processes applied to obtain oil eliminated the mycotoxins found in the raw material from remaining in the oil and that the oils did not pose a risk in this sense. A limited number of recent studies have shown that the processes applied throughout the process, starting from oilseeds to refined oil, only reduce the level of mycotoxins, but mycotoxins may be present in oils, albeit at low levels. Moreover, studies including limited market scans have shown that refined oils contain different levels of mycotoxins. In this study, the presence of aflatoxin in sunflower oil and corn oil sold as refined in our country's markets was investigated and the situation of the oils in terms of aflatoxin content was revealed. Total aflatoxin presence was determined in the range of 0.06-0.198 μg/kg in 16 (32%) of 50 refined sunflower oil samples and in the range of 0.03-0.144 μg/kg in 28 (63.63%) of 44 refined corn oil samples. In the study, AFB1 was detected in the range of 0.06-0.082 μg/kg in 5 of 16 refined sunflower oil samples, and in the range of 0.014-0.032 μg/kg in 4 of 28 refined corn oil samples. Although the presence of aflatoxin was detected in some of the samples used in the study, the determined amounts were found to be well below the international toxin criteria reported for vegetable oil.

___

  • Abdolmaleki, K., Khedri, S., Alizadeh, L., Javanmardi, F., Oliveira, C. A. F., Mousavi Khaneghah, A. (2021). The mycotoxins in edible oils: An overview of prevalence, concentration, toxicity, detection and decontamination techniques. Trends in Food Science and Technology, 115: 500–511.
  • Al-Ameiri, N. S., Karajeh, M. R., Qaraleh, S. Y. (2015). Molds associated with olive fruits infested with olive fruit fly (Bactrocera oleae) and their effects on oil quality. Jordan Journal of Biological Sciences, 8(3): 217–220.
  • Banu, N., Muthumary, J. (2010). Aflatoxin B1 contamination in sunflower oil collected from sunflower oil refinery situated in Karnataka. Health, 02(08): 973–987.
  • Bordin, K., Sawada, M. M., Rodrigues, C. E. da C., da Fonseca, C. R., Oliveira, C. A. F. (2014). Incidence of Aflatoxins in Oil Seeds and Possible Transfer to Oil: A Review. Food Engineering Reviews, 6(1–2): 20–28.
  • Boutrif, E. (1998). Prevention of aflatoxin in pistachios. Food Nutr. Agric. 21: 32–38.
  • Bressac, B., Puisieux, A., Kew, M., Volkmann, M., Bozcall, S., Bella Mura, J., de la Monte, S., Carlson, R., Blum, H., Wands, J., Takahashi, H., von Weizsacker, F., Galun, E., Kar, S., Carr, I., Schroder, C. H., Erken, E., Varinli, S., Rustgi, V. K., Prat, J., Toda, G., Koch, H. K., Huan Liang, X., Tang, Z. you, Shouval, D., Lee, H. S., Vyas, G. N., Sarosi, I., Ozturk, M. (1991). P53 Mutation in Hepatocellular Carcinoma After Aflatoxin Exposure. The Lancet, 338(8779): 1356–1359.
  • Chen, L., Molla, A. E., Getu, K. M., Ma, A., Wan, C. (2019). Determination of aflatoxins in edible oils from china and ethiopia using immunoaffinity column and HPLC-MS/MS. Journal of AOAC International, 102(1): 149–155.
  • Clavel, D., Brabet, C. (2013). Mycotoxin contamination of nuts. Improving the safety and quality of nuts. Harris, L.J., Ed.; Woodhead Publishing: Oxford, UK, 88–118 s.
  • Cserháti, M., Kriszt, B., Krifaton, C., Szoboszlay, S., Háhn, J., Tóth, S., Nagy, I., Kukolya, J. (2013). Mycotoxin-degradation profile of Rhodococcus strains. International Journal of Food Microbiology, 166(1): 176–185.
  • Daradimos, E., Marcaki, P., Koupparis, M. (2000). Evaluation and validation of two fluorometric HPLC methods for the determination of aflatoxin B1 in olive oil. Food Additives and Contaminants, 17(1): 65–73.
  • Deng, H., Su, X., Wang, H. (2018). Simultaneous determination of aflatoxin b1, bisphenol a, and 4-nonylphenol in peanut oils by liquid-liquid extraction combined with solid-phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Analytical Methods, 11(5): 1303–1311.
  • Doster, M. A., Cotty, P. J., Michailides, T. J. (2009). Description of a distinctive aflatoxin- producing strain of Aspergillus nomius that produces submerged sclerotia. Mycopathologia, 168(4): 193–201.
  • Elzupir, A. O., Suliman, M. A., Ibrahim, I. A., Fadul, M. H., Elhussein, A. M. (2010). Aflatoxins levels in vegetable oils in Khartoum State, Sudan. Mycotoxin Research, 26(2): 69–73.
  • European Commission (2006). Commission Regulation (EC) No 401/2006 of 23 - sampling methods for mycotoxins in foodstuffs. Official Journal of the European Union, 70(401): 12–34.
  • Feddern, V., Dors, G. C., Tavernari, F. D. C., Mazzuco, H., Cunha, A., Krabbe, E. L., Scheuermann, G. N. (2013). Aflatoxins importance on animal nutrition. Aflatoxins-Recent Advances and Future Prospects, 171-195.
  • Gianessi, L. (2009). The Benefits of Insecticide Use: Almonds. Croplife, Crop Protection Research Institute, USA., 9-12 s.
  • Gorrepati, K., Balasubramanian, S., Chandra, P. (2015). Plant based butters. Journal of Food Science and Technology, 52(7): 3965–3976.
  • Gunstone F.D., 2002. Production and trade of vegetable oils. Vegetable oils in food technology: composition, properties and uses. Blackwell Publishing, UK. (1st Edition), 1-17 s.
  • Gupta, R. C., Lasher, M. A., Miller Mukherjee, I. R., Srivastava, A., Lall, R. (2022). Aflatoxins, ochratoxins, and citrinin. In Reproductive and Developmental Toxicology. Academic press, USA. 983-1002 s.
  • Gürhayta, O. F., Çağındı, Ö. (2016). Kurutulmuş Meyvelerde Aflatoksin ve Okratoksin A Varlığının ve Sağlık Üzerine Etkilerinin Değerlendirilmesi. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 12(2): 327–338.
  • Heperkan, D., Aran, N., Ayfer, M. (1994). Mycoflora and aflatoxin contamination in shelled pistachio nuts. Journal of the Science of Food and Agriculture, 66(3): 273–278.
  • Idris, Y. M. A., Mariod, A. A., Elnour, I. A., Mohamed, A. A. (2010). Determination of aflatoxin levels in Sudanese edible oils. Food and Chemical Toxicology, 48(8–9): 2539– 2541.
  • Karunarathna, N. B., Fernando, C. J., Munasinghe, D. M. S., Fernando, R. (2019). Occurrence of aflatoxins in edible vegetable oils in Sri Lanka. Food Control, 101 (February), 97–103.
  • Lavkor, I., Var I., Öztemiz, S., Arıoğlu, H. H. (2017). Yerfıstığı Alanlarında Aflatoksin Oluşumunun Azaltılmasına Yönelik Apatojenik Aspergillus flavus’un Biyolojik Mücadelede Kullanım Olanaklarının Araştırılması. Tübitak 3001 Proje Sonuç Raporu, Adana, Türkiye, 139 s.
  • Mahoney, N. E., Cheng, L. W., Palumbo, J. D. (2021). Fate of aflatoxins during almond oil processing. Journal of Food Protection, 84(1): 106–112.
  • Méndez-Albores, A., Veles-Medina, J., Urbina-Álvarez, E., Martínez-Bustos, F., Moreno- Martínez, E. (2009). Effect of citric acid on aflatoxin degradation and on functional and textural properties of extruded sorghum. Animal Feed Science and Technology, 150(3–4): 316–329.
  • Öksüztepe, G., Erkan, S. (2016). Mikotoksinler ve Halk Sağlığı Açısından Önemi. Harran Üniversitesi Veteriner Fakültesi Dergisi, 5(2): 190–195.
  • Özkaya, Ş., Temiz, A. (2003). Aflatoksinler : Kimyasal Yapıları, Toksisiteleri Giriş Aflatoksinlerin Kimyasal Yapısı. Orlab On-line Mikrobiyoloji Dergisi, 01(01): 1–21.
  • Pour, R. S., Rasti, M., Zighamian, H., Daraei Garmakhani, A. (2010). Occurrence of aflatoxins in pistachio nuts in esfahan province of Iran. Journal of Food Safety, 30(2): 330–340.
  • Qi, N., Yu, H., Yang, C., Gong, X., Liu, Y., Zhu, Y. (2019). Aflatoxin B1 in peanut oil from Western Guangdong, China, during 2016–2017. Food Additives and Contaminants: Part B Surveillance, 12(1): 45–51.
  • Rustom, I. Y. S. (1997). Aflatoxin in food and feed: Occurrence, legislation and inactivation by physical methods. Food Chemistry, 59(1): 57–67.
  • Saalia, F. K., Phillips, R. D. (2011). Reduction of aflatoxins in peanut meal by extrusion cooking in the presence of nucleophiles. LWT - Food Science and Technology, 44(6): 1511–1516.
  • Samarajeewa, U., Gamage, T. V., Arseculeratne, S. N. (1983). Aflatoxin contamination of coconut oil from small scale mills: toxin levels and their relation to free fatty acid content. Journal of the National Science Foundation of Sri Lanka, 11(2): 203-210.
  • Schollenberger, M., Müller, H. M., Rüfle, M., Drochner, W. (2008). Natural occurrence of 16 Fusarium toxins in edible oil marketed in Germany. Food Control, 19(5): 475–482.
  • Sinnhuber, R. O., Hendricks, J. D., Wales, J. H., Putnam, G. B. (1977). Neoplasms in rainbow trout, a sensitive animal model for environmental carcinogenesis. Annals of the New York Academy of Sciences, 298(1): 389–408.
  • Şengül, Ü., Şengül, B., Apaydin, E., Taşçi, E., İlgün, R., 2018. Aflatoxin contamination in hazelnut oil obtained from hazelnuts containing high levels of aflatoxin. Tarim Bilimleri Dergisi, 24(4): 523–530.
  • Tekin, A. (2023). Bazı Rafinasyon İşlem Basamakları ile Yağ Ekstraksiyon Yöntemlerinin Antep Fıstığında Toplam Aflatoksin ve Zeytinde Okratoksin A Düzeylerine Etkisi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Adana, Türkiye, 102 s.
  • Var, I. (1987). Çerezlik Yerfıstıklarında Aflatoksin Saptanması Üzerine Bir Araştırma. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Tarım Ürünleri Teknolojisi Anabilim Dalı Yüksek Lisans Tezi, Adana, Türkiye, 37 s.
  • Var, I., Kabak, B. (2004). Removal of aflatoxins by viable and heat-killed lactic acid bacteria and bifidobacteria. Archiv für Lebensmittelhygiene, 55(5): 106–109.
  • Var, I., Uçkun, O. (2021). Extraction Methods’ Effects on Aflatoxin Concentration during Sunflower Oil Processing: First Report. European Journal of Agriculture and Food Sciences, 3(5): 136–143.
  • Vijaya-Kumar, V. (2018). Aflatoxins: Properties, Toxicity and Detoxificatio. Nutri Food Sci Int J., 6(5): 555696.
  • Yang, Li Xin, Liu, Y. P., Miao, H., Dong, B., Yang, N. J., Chang, F. Q., Yang, Li Xue, Sun, J.B. (2011). Determination of aflatoxins in edible oil from markets in Hebei Province of China by liquid chromatography-tandem mass spectrometry. Food Additives and Contaminants: Part B Surveillance, 4(4): 244–247.
  • Zijden, A. S. M., Koelensmid, W. B., Boldingh, J., Barrett, C. B., Ord, W. O., Philp, J. (1962). Aspergillus flavus and turkey X disease: Isolation of crystalline form of a toxin responsible for turkey X disease. Nat. Int. J. Sci., 196: 1048–1050.