Katmanlı Toprakların Hidrolik Özellikleri için Pedotransfer Eşitlikler

Bu çalışmada, göl orijinli Kuzeybatı Ohio’daki bir ovanın dokuz profiline ait 34 horizonundan alınan toprak örneklerinde ölçülmüş basit toprak fiziksel ve kimyasal özellikleri kullanılarak, düşey doygun hidrolik iletkenlik, 0- (doygun), 60- (drene edilebilir porozite), 100-, 330- (tarla kapasitesi), 1000-, ve 15000-cm (devamlı solma noktası) emme basınçlarındaki su içerikleri için pedotransfer eşitlikleri geliştirilmiştir. Bu işlemde, stepwise yöntemli çoklu doğrusal regresyon analiz yöntemi kullanılmıştır. Geliştirilen eşitliklerin doğrulukları, Tokat merkeze yakın alüvyal Yeşilırmak vadisinde açılan beş profilin 19 horizonuna ait toprak örneklerinde ölçülmüş, düşey doygun hidrolik iletkenlik, 330- ve 15000-cm emme basınçlarına karşılık toprakta tutulan su içerikleri kullanılarak değerlendirilmiştir. Hidrolik iletkenlik ve tarla kapasitesi (330-cm) için geliştirilmiş eşitlikler sırasıyla düşük ve yüksek sonuçlar üretmiştir. Devamlı solma noktası (15000-cm) için geliştirilmiş eşitlikler ise orta derecede iyi sonuçlar üretmiştir.

Pedotransfer Functions for the Hydraulic Properties of Layered Soils

In this study, the pedotransfer functions for the vertical saturated hydraulic conductivity, water contents at the suctions of 0- (saturation), 60- (drainable porosity), 100-, 330- (field capacity), 1000-, and 15000-cm (permanent wilting point) were developed using easily measurable soil physical and chemical properties obtained from 34 horizons of nine profiles from a lake origin of Northwest Ohio plain. For this analysis, the multiple-linear regression analysis by stepwise method was employed. The accuracy of these functions were evaluated using the measured vertical saturated hydraulic conductivity and water contents at the field capacity and wilting points from the soils of 19 horizons of five profiles of an alluvial Yeşilırmak River valley close to the downtown of Tokat city. The results of evaluation showed that the developed pedotransfer functions for the vertical saturated hydraulic conductivity and field capacity produced under and over predictions, respectively. The developed pedotransfer functions for the wilting point yielded fair results.

___

  • Aydın, M.E. 2006. Soil formation and taxonomy in Yeşilırmak River terraces. Master Thesis. Graduate School of Natural and Applied Sciences of Gaziosmanpaşa University, Turkey, p.49.
  • Bell, M.A. and H. van Keulen. 1995. Soil pedotransfer functions for four Mexican soils. Soil Science Society of American Journal 59:865-871.
  • Blake, G.R. and K.H. Hartge. 1986. Bulk density. In: A. Klute (Editor), Methods of Soil Analysis, Part 1, 2nd ed. Agron. Monogr. 9, ASA, Madison, WI, pp.363- 375.
  • Brooks, R.H. and A.T. Corey. 1964. Hydraulic properties of porous media. Hydrology Paper no. 3. Colorado State University, Fort Collins.
  • Cemek, B., R. Meral, M. Apan and H. Merdun. 2004. Pedotransfer functions for the estimation of the field capacity and permanent wilting point. Pakistan Journal of Biological Sciences 7(4):535-541.
  • Chung, S.O., A. Ward and C.W. Schalk. 1992. Evaluation of the hydrologic component of the ADAPT water table management model. Transactions of the ASAE 35(2):571-579.
  • Clement, C.R. 1966. A simple and reliable tension table. J.Soil Science 17:133-135.
  • Feddes, R.A., P.J. Kowalik and H. Zaradyn. 1978. Simulation of field water use and crop yield. Simulation Netherlands: PUDOC. Wageningen, the
  • Gardner, W.R. 1958. Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Science 85:228-232.
  • Gee, G.W. and J.W. Bauder. 1986. Particle size analysis. In: A. Klute (Editor), Methods of Soil Analysis, Part 1, 2nd ed. Agron. Monogr. 9, ASA, Madison, WI, pp.383-409.
  • Gupta, S.C. and W.E. Larson. 1979. Estimating soil water retention distribution, organic matter content, and bulk density. Water Resources Research 15:1633-1635.
  • Holmgren, G.S., R.L. Juve, and R.C. Geschwender. 1977. A mechanically controlled variable-rate leaching device. Soil Science Society of American Journal. 41(6):1207-1208.
  • Klute, A. 1986. Water retention: Laboratory methods. In: A. Klute (Editor), Methods of Soil Analysis, Part 1, 2nd ed. Agron. Monogr. 9, ASA, Madison, WI, pp.635-660.
  • Klute, A. and C. Dirksen. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: A. Klute (Editor), Methods of Soil Analysis, Part 1, 2nd ed. Agron. Monogr. 9, ASA, Madison, WI, pp.687-732.
  • McLean, E.O. 1982. Soil pH and lime requirement. In: Methods of Soil Analysis Eds. Page et al.) Part 2, 2nd Edn. Agron. Monogr. 9, ASA and SSSA, Madison, WI, pp. 199-224.
  • Nelson, D.W. and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis, Part 2. Microbiological and Biochemical Properties. SSSA Book Series: 5 (formerly Agronomy Monograph 9) (Ed. A. Klute). Madison, Wisconsin, USA, pp. 539-579.
  • Oztekin, T. 2000. Modification and Evaluation of WEPP Water Table Management Model. Ph.D Thesis, Ohio State University, Columbus, Ohio. 290 p.
  • Oztekin, T. and L. C. Brown. 2001. Modification of the WEPP Hillslope Model for Subsurface Drained Cropland. 314-317. In Proc. of the International Symposium on Soil Erosion Research for the 21’th Century. ed. J.C. Ascough II and D.C. Flanagan. ASAE.713 p.
  • Pachepsky, Y.A. and W.J. Rawls. 1999. Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Science Society of American Journal 63:1748-1757.
  • Peech, M.L., A. Dean, and J.F. Reed. 1947. Methods of soil analysis for soil-fertility investigations. USDA Circular No. 757. U.S. Government Printing Office, Washington, D.C.
  • Post, G.J. 1956. A study of three methods for determination of organic carbon in Ohio soils of several great groups and the profile distribution of carbon-nitrogen ratios. M.S. Thesis, The Ohio State University.
  • Rawls, W.J., D.L. Brakensiek and K.E. Saxton. 1982. Estimation of soil water properties. Transactions of the ASAE 25(5):1316-1320, 1328.
  • Richards, L.A. 1954. Diagnosis and Improvement of Saline and Alkaline Soils, USDA Handbook, No:60.
  • Salchow, E., R. Lal, N.R. Fausey and A. Ward. 1996. Pedotransfer functions for variable alluvial soils in southern Ohio. Geoderma 73:165-181.
  • SAS Institute Inc., 1999. SAS/STAT user’s guide. Ver. 8.0. SAS Institute Inc., Cary, NC.
  • Saxton, K.E., W.J. Rawls, J.S. Romberger and R.I. Papendick. 1986. Estimating generalized soil-water characteristics from texture. Soil Science Society of American Journal 50:1031-1036.
  • Simsek, H., T. Öztekin and A. Durak. 2007. Variability in some irrigation related soil properties of the alluvial soils formed by the Yesilirmak River. Asian Journal of Chemistry 19(7):1-8.
  • Skaggs, R.W. 1978. A water management model for shallow water table soils. Report No. 134. Raleigh, NC. Water Resources Research Institute, Univ. of North Carolina. 175 p.
  • Soil Survey Staff. 1972. Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples. Soil Survey Investigations Report No. 1. USDA Soil Conservation Service. U.S. Govt. Printing Office, Washington D.C.
  • Tomasella, J., M. G. Hodnett and L. Rossato. 2000. Pedotransfer functions for the estimation of soil water retention in Brazilian soils. Soil Science Society of American Journal 64:327-338.
  • USDA. 1984. Soil Survey of Defiance County, Ohio. United States Department of Agriculture-Soil Conservation Service. 246 p.
  • Wösten, J.H.M. and M. Th. van. Genuchten. 1988. Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Science Society of American Journal 52:1762-1770.
  • van Genuchten, M. Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of American Journal 44:892-898.
  • Vereecken, H. 1988. Pedotransfer functions for the generation of hydraulic properties of Belgian soils. Ph.D diss. Katholieke Universiteit, Leuven, Belgium.
  • Vereecken, H., J. Diels, J. van Orshoven, J. Feyen, and J. Bouma. 1992. Functional evaluation of pedotransfer functions for the estimation of soil hydraulic properties. Soil Science Society of American Journal 56:1371-1378.
Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1300-2910
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Tokat Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi Yayın Ofisi
Sayıdaki Diğer Makaleler

Erzurum Kentinin Kesme Çiçek Tüketim Potansiyelinin Belirlenmesi ve Çözüm Önerileri

YAHYA BULUT, ELİF AKPINAR KÜLEKÇİ, Hilal YILMAZ

Tokat İli Erbaa Ovasındaki Tarım İşletmelerinin Optimum Üretim Planlarının Belirlenmesi Üzerine Bir Araştırma

Gülçin ALTINTAŞ, Yasar AKÇAY

Kombine Ekim Makinasında Farklı Ekim Normları ve İlerleme Hızlarının Buğday ve Fiğ Tohumlarının Sıra Üzeri ve Sıralar Arası Tohum Dağılım Düzgünlüğüne Etkileri

EBUBEKİR ALTUNTAŞ, HAKAN POLATCI, Erdal BAYRAM

Vermikompost Ürünlerinin Eldesi ve Tarımsal Üretimde Kullanım Alternatifleri

Şimşek Yurdagül ERŞAHİN

Hacim Ağırlığı ve Drenaj Sisteminin İnfiltrasyona Etkileri

TEKİN ÖZTEKİN, Selma ÖZTEKİN

Bazı nohut (Cicer arietinum L.) çeşitlerinin farklı çevrelerde antraknoz (Ascochyta rabiei) 'a dayanımları ve tane verimleri üzerine bir araştırma

Oral DÜZDEMİR, Cevdet AKDAĞ, YUSUF YANAR

Avrupa Birliği kırsal kalkınma programlarının Türkiye'nin kırsal kalkınması açısından incelenmesi: SAPARD ve IPARD örneği

Metin CAN, Kemal ESENGÜN

Tokat İli Erbaa Ovasında Tarım İşletmelerinin Ekonomik Analizi ve İşletmelerin Başarısını Etkileyen Faktörlerin Ortaya Konulması

Gülçin ALTINTAŞ, Yasar AKÇAY

Katmanlı Toprakların Hidrolik Özellikleri için Pedotransfer Eşitlikler

TEKİN ÖZTEKİN, BİLAL CEMEK, C. Larry BROWN

Işıklanma ve Meyve Dokusunun Amasya ve Fuji Elmalarında Antioksidan Kapasitesine Etkisi

Mustafa ÖZGEN, Habib TOKBAŞ