Karayemiş Meyvesinin (Prunus Laurocerasus L.) Bileşimi ve Antioksidan Aktivitesi Üzerine Yükseklik ve Konum Etkisi

Bu çalışma kapsamında iki farklı yer ve yükseklikte yetiştirilen karayemiş (Prunus laurocerasus L.) meyvesinin bileşim ve antioksidan özellikleri incelendi. Büyüme koşulları ve incelenen özellikler arasındaki ilişkiyi daha iyi açıklamak için sonuçlar principle component analizi ile değerlendirildi. Elde edilen sonuçlara göre meyvenin toplam fenolik madde miktarı, bireysel fenolik bileşenleri, şeker, sitrik asit içeriği ve antioksidan aktivitesi yetiştirildiği yer ve rakımdan oldukça etkilendiği belirlendi. Trabzon bölgesinde yetiştirilen meyve Rize bölgesinde yetiştirilene kıyasla daha yüksek bileşen miktarına sahip iken, en yüksek bileşen kompozisyonu her iki bölgenin düşük rakımında yetiştirilen meyvelerinde belirlendi. Trabzon ve Rize bölgelerinde rakımın sırası ile 351 den 49 m’ye ve 316’dan 14 m’ye düşmesi ile toplam fenolik içeriğinin 21.90 dan 23.32’ye ve 16.84’den 18.91 mg gallik asit miktarı eşdeğeri / 100 g kuru madde (KM)’ye yükseldiği, β-karoten miktarının 5.19’dan 6.75’e ve 4.16’dan 5.61 mg / kg KM’ye yükseldiği, toplam şeker miktarının ise 81.68’den 131.99’a ve 86.44’den 99.58 mg / g KM’ye yükseldiği belirlendi. Klorojenik asit (1404.46-7358.63 mg /kg KM) ve rutin (1491.05-2712.91 mg / kg KM) tüm örneklerde baskın fenolik bileşiklerdir

Effect of Altitude and Location on Compositions and Antioxidant Activity of Laurel Cherry (Prunus Laurocerasus L.)

The compositional and antioxidant properties of cherry laurel (Prunus laurocerasus L.) fruit, which grow in two different locations (Trabzon and Rize) and altitudes, were investigated. The results indicated that antioxidant activity, total phenolic content, citric acid, sugars and phenolic compounds were affected by location and altitude. While fruits of Trabzon province have higher composition content than those of Rize province, fruits collected at low altitudes in both regions were found to have superior properties. Total phenolic content in fruits from Trabzon and Rize provinces increased from 21.90 to 23.32 and from 16.84 to 18.91 mg gallic acid equivalent / 100 g dry weight (DW), β-carotene increased from 5.19 to 6.75 and from 4.16 to 5.61 mg / kg DW, and total sugar increased from 81.68 to 131.99 and from 86.44 to 99.58 mg / g DW when altitude decrease from 351 to 49 m and 316 to 14 m, respectively. Chlorogenic acid (1404.46-7358.63 mg / kg DW) and rutin hydrate (1491.05-2712.91 mg / kg DW) were major phenolic compounds in all samples.

___

  • Alasalvar, C., Al-Farsı, M., & Shahidi, F. (2005). Compositional characteristics and antioxidant components of cherry laurel varieties. Journal of Food Science, 70(1), 47-52. https://doi.org/10.1111/j.1365-2621.2005.tb09064.x
  • Ayaz, F.A., Kadıoğlu, A., & Hayırlıoğlu-Ayaz, S. (1998). Determination of some low molecular weight carbohydrates in the fruits of wild cherry laurel (Laurocerasus officinalis Roem.) using gas chromatography. Turkey Journal of Botany, 22, 65-68.
  • Ayaz, F.A, Kadıoğlu, A., Reunanen, M., & Var, M. (1997). Sugar composition in fruits of Laurocerasus officinalis Roem. and its three cultivars. Journal of Food Compositional Analysis, 10, 82-86.
  • Ayaz, F.A. (2004). Changes in phenolic acids of cherry laurel (Laurocerasus officinalis ‘Oxygemmis’) fruit during maturation. Acta Biologica Cracoviensia. 4: 23-26.
  • Barba, A.I., Hurtado, M.C., Mata, M.C.S., Ruiz, V.F., & de Tejada, M.L.S. (2006). Application of a UV-vis detection-HPLC method for a rapid determination of lycopene and b-carotene in vegetables. Food Chemistry, 95(2), 328–336. https://doi.org/10.1016/j.foodchem.2005.02.028
  • Brand-William, W., Cuvelier, M.E., & Berset, C. (2005). Use of free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Chambell, O. E., & Padilla-Zakour, O. I. (2013). Characterization and the effect of maturity at harvest on the phenolic and carotenoid content of northeast USA apricot (Prunus armeniaca) varieties. Journal of Agricultural and Food Chemistry, 61, 12700-12710.
  • Celik, F., Ercisli, S., Yılmaz, S.O., & Hegedus, A. (2011). Estimation of Certain Physical and Chemical Fruit Characteristics of Various Cherry Laurel (Laurocerasus officinalis Roem.) Genotype. Hortscience, 46, 924-927. https://hdl.handle.net/20.500.12619/67324
  • Coklar, H. (2017). Antioxidant capacity and phenolic profile of berry, seed, and skin of Ekşikara (Vitis vinifera L.) grape: Influence of harvest year and altitude. International Journal of Food Properties, 20(9), 2071-2078. https://doi.org/10.1080/10942912.2016.1230870
  • Crespo, P., Bordonaba, J.G., Terry, L.A., & Carlen, C. (2010). Characterization of major taste and health-related compounds of four strawberry genotypes grown at different Swiss production sites. Food Chemistry, 122(1), 16-24. https://doi.org/10.1016/j.foodchem.2010.02.010
  • Fisher, G., Ebert, G., & Lüdders, P. (2007). Production, seed and carbohydrate contents of cape gooseberry (Physalis peruviana L.,) fruits grown at two contrasting Colombian altitudes. Journal of Applied Botany and Food Quality Section, 81(1), 29-35.
  • Turkish State Meteorological Service, (2018, December 13). Annually rainfall amounth of Trabzon and Rize for the year 2017 from https://mgm.gov.tr
  • Karabegović, I., Stojićević, S., Velićković, D., Todarovi, Z.B., Nikolić, N.Ć., & Lazić, M.L. (2014). The effect of different extraction techniques on the composition and antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extract Industrial Crops and Products 54, 142-148. https://doi.org/10.1016/j.indcrop.2013.12.047
  • Karahalil, F.Y., & Şahin, H. (2011). Phenolic composition and antioxidant capacity of Cherry laurel (Laurocerasus officinalis Roem.) sampled from Trabzon region Turkey. African Journal of Biotechnology, 10 (72), 16293-16299.
  • Kim, D.O., & Lee, C.Y. (2002). Extraction and isolation of polyphenolics. In current protocols in food analytical chemistry, Wrolstad, R.E.Ed; John Willey and Sons: New York, pp. 11-12.
  • Krayjalyte, V., Venskutonis, P.R., Pukalskas, A., Ĉesoniené, D.T. (2013). Antioxidant properties and polyphenolic compositions of fruits from different European cran berry bush (Vibrunum opulus L.) genotypes. Food Chemistry. 141(4), 3695-3702. https://doi.org/10.1016/j.foodchem.2013.06.054
  • Macar, O.K., & Macar, T. (2018). Altitude triggers some biochemical adaptations of Polygonum cognatum Meissn. plants. Journal of Cumhuriyet Science, 39(1), 621-627.
  • Mditshwa, A., Fawole, O.A., Al-Said, F., Al-Yahya, R., & Opara, U.L. (2013). Phytochemical content, antioxidant capacity and physicochemical properties of pomegranate grown in different microclimates in South Africa. South African Journal of Plant and Soil, 30(4), 81-90.
  • Mphahlele, R.R., Stander, M.A., Fawole, O.A., & Opara, U.L. (2014). Effect of fruit maturity and growing location on the postharvest contents of flavonoids, phenolic acids, vitamin C and antioxidant activity of pomegranate juice (cv. Wonderful). Scientia Horticulturae, 179 (24), 36-45.
  • Ozturk, B., Celik, S.M., Karakaya, M., Karakaya, O., Islam, A., & Yarılgac, T. (2017). Storage temperature affects phenolic content, antioxidant activity and fruit quality parameters of cherry laurel (Prunus laurocerasus L.). Journal of Food Processing and Preservation, 41(1), 1-10. https://doi.org/10.1111/jfpp.12774
  • Pereira, G.E., Gaudillere, J.P., Pieri, P., Hilbert, G., Maucourt, M., Debord, C., Moıng, A., & Rolin, D. (2006). Microclimate Influence on Mineral and Metabolic Profiles of Grape Berries. Journal of Agricultural Food Chemistry, 54(18), 6765-6775. https://doi.org/10.1021/jf061013k
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolonization assay. Free Radical and Biology and Medicine, 26(9), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Sadler, G., Davis, J., & Dezman, D. (1990). Rapid extraction of lycopene and β-carotene from reconstituted tomato paste and pink grapefruit homogenates. Journal of Food Science, 55(5), 1460-1461. https://doi.org/10.1111/j.1365-2621.1990.tb03958.x
  • Senica, M., Stampar, F., Veberic, R., & Mikulic-Petkovsek, M. (2016). The higher the better? Differences in phenolics and cyanogenic glycosides in Sambucus nigra leaves, flowers and berries from different altitude. Journal of the Science of Food and Agriculture, 97(8), 2623-2632. https://doi.org/10.1002/jsfa.8085
  • Sturm, K., Koron, D., & Stamper, F. (2003). The composition of fruit of different strawberry varieties depending on maturity stage. Food Chemistry, 83(3), 417-422. https://doi.org/10.1016/S0308-8146 (03)00124-9
  • Topalovic, A., & Mikulic-Petkovsek, M. (2010). Changes in sugars, organic acids and phenolic of grape berries of cultivar cardinal during ripening. Journal of Food, Agriculture & Environment, 8(3), 223-227.
  • Var, M., & Ayaz, F.A. 2004. Changes in sugar composition in cherry laurel (cv oxygemmis) fruit during development and ripening. Pakistan Journal of Botanical. 36(2), 389-394.
  • Veberic, R., Jakopic, J., Stampar, F., & Schmitzer, V. (2009). European elderberry (Sambucus nigra L.) rich in sugar, organic acids, anthocyanins and selected polyphenols. Food Chemistry, 114(2), 511-515. https://doi.org/10.1016/j.foodchem.2008.09.080
Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1300-2910
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Tokat Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi Yayın Ofisi