Bitki Biyoteknolojisinde Moleküler Markörler

Biyoteknoloji, günümüzde en popüler ve yeniliklere açık bilimsel alanların başında gelmektedir. Bitki biyoteknolojisi de bu alanlardan biridir ve bu alanda kullanılan moleküler markör teknolojileri çok önemli bir biyoteknolojik araç olarak karşımıza çıkmaktadır. Moleküler markör ile genomda herhangi bir gen bölgesi ya da gen bölgesi ile ilgili DNA parçası temsil edilmektedir. Polimer Zincir Reaksiyonunun (PCR) keşfinden sonra Çoğaltılmış Parça Uzunluk Polimorfizm (AFLP), Basit Dizi Tekrarları (SSR), Dizi İlişkili Çoğaltılmış Polimorfizm (SRAP), Tek Nükleotid Polimorfizmi (SNP) ve Basit Tekrarlı Diziler Arası Polimorfizm (ISSR) gibi yaygın olarak kullanılan çok sayıda moleküler markör teknikleri geliştirilmiştir. Bu markör teknolojileri fiziksel haritalama, gen keşfi ve etiketleme, filogenetik çalışmalar, evrimsel genetik ve genetik çeşitlilik çalışmaları gibi pek çok alanda etkin şekilde kullanılmaktadırlar. Sonuç olarak, moleküler markörler bitki biyoteknolojisi çalışmalarına çok önemli boyutlar kazandırmış, daha etkili ve hızlı bilimsel sonuçların alınmasına imkân sağlamıştır. Bu çalışmada, bitki biyoteknolojisinde kullanılan moleküler markör teknolojilerinin genel prensipleri, avantajları-dezavantajları ve uygulama alanlarından bahsedilmiştir.

Molecular Markers in Plant Biotechnology

At present, biotechnology is one of scientific fields that is the most popular and open to latest advances. Plant biotechnology is one of these fields and molecular marker technologies used in this area appears to be an important biotechnological tool. With molecular marker, any gene in the genome or gene region related with any piece of DNA is represented. After the discovery of Polymerase Chain Reaction (PCR), a large number of molecular marker techniques which are commonly used have been developed such as Amplified Fragment Length Polymorphism (AFLP), Simple Sequence Repeats (SSR), Sequence-Related Ampli?ed Polymorphism (SRAP), Single Nucleotide Polymorphism (SNP) and Inter Simple Sequence Repeat (ISSR). These marker technologies are used effectively in many fields such as physical mapping, gene discovery and tagging, phylogenetic studies, evolutionary genetic and genetic diversity studies. As a result, molecular markers have brought expansive dimensions in plant biotechnology studies, enabling to get more efficient and rapid scientific results. In this study, general principles, advantages-disadvantages and application areas of molecular marker technologies used in biotechnology are discussed.

___

  • Agarwal, M., N. Shrivastava ve H. Padh, 2008.Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep, 27, 617–631.
  • Althoff, D.M., M.A. Gitzendanner, K.A. Segraves, 2007. The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Syst Biol, 56, 477–484.
  • Budak, H., R.C. Shearman, I. Parmaksiz, R.E. Gaussoin, T.P. Riordan, I. Dweikat, 2004. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet, 108, 328–334.
  • Caetano-Anolles, G., B.J. Bassam, P.M. Gresshoff, 1991.DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Biotechnol, 9, 553–557.
  • Ching, A.D.A., Caldwell K.S., Jung M. ve ark.,, 2002. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines.BMC Genet, 3, 19.
  • Davis, G.L., M.D. Mcmullen, C. Baysdorfer, T. Musket, D. Grant ve ark.,, 1999. A maize map standard with sequenced core markers, grass genome reference points, and 932 expressed sequence tagged sites (ESTs) in a 1736 locus map. Genetics, 152, 1137– 1172.
  • Desplanque, B., P. Boudry, K. Broomberg, P. SaumitouLaprade, J. Cuguen, H. Dijk, 1999. Genetic diversity and gene flow between wild, cultivated and weedy forms of Beta vulgaris L. (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theor. Appl. Genet.,98, 1194–1201.
  • Filiz, E., B.S. Ozdemir, M. Tuna, H. Budak, 2009. Diploid Brachypodium distachyon of Turkey: Molecular and Morphological analysis, Molecular Breeding of Forage and Turf, ed: Yamada T. and Spangenberg G., Springer Science, Pp: 83.
  • Freudenreich, C.H., J.B Stavenhagen., V.A. Zakian, 1997. Stability of a CTG:CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol. Cell Biol., 4, 2090–2098.
  • Gupta, M, Y.S. Chyi, J. Romero-Severson, J.L. Owen, 1994. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple sequence repeats. Theor. Appl. Genet., 89, 998-1006.
  • Hu, J. ve B.A Vick, 2003. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep, 21, 289–294.
  • Hu, J., O.E Ochoa, M.J. Truco, B.A. Vick, 2005. Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica, 144, 225–235.
  • Jeffreys, A.J., V. Wilson, S.L. Thein, 1985. Hypervariable “minisatellite” regions in human DNA. Nature, 314, 67-73.
  • Jones, N., H. Ougham, H. Thomas, I. Pašakinskienë, 2009. Markers and mapping revisited: finding your gene. New Phytologist, 183, 935–966.
  • Jongeneel, C.V., 2000. Searching the expressed sequence tag (EST) databases: panning for genes. Brief Bioinform 1: 76–92.
  • Joshi, S.P., V.S. Gupta, R.K. Aggarwal, P.K. Ranjekar, D.S. Brar, 2000. Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor. Appl. Genet., 100, 1311–1320.
  • Jump, A.S. ve J. Peñuelas, 2005. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett., 8, 1010–1020.
  • Kantety, R.V., M.L Rota., D.E. Matthews, M.E. Sorrells, 2002. Data mining for simple-sequence repeats in expressed sequence tags from barley, maize, rice, sorghum, and wheat. Plant Mol. Biol., 48, 501–510.
  • Kesawat, M.S. ve B.K Das, 2009. Molecular Markers: It's Application in Crop Improvement. J. C Biotech., 12 (4),169 -181.
  • Konieczny, A. ve F.M. Ausubel, 1993.Procedure for mapping Arabidopsis mutations using codominant ecotype-specific PCR-based markers. Plant J, 4, 403–410.
  • Kurata, N., Y. Umehara, H. Tanoue, T. Sasaki, 1997. Physical mapping of the rice genome with YAC clones. Plant Mol. Biol., 35, 101–113.
  • Li, G. ve C.F. Quiros, 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 103, 455–546.
  • Matsuoka, Y., S.E. Mitchell, S. Kresovich, M. Goodman, J. Doebley, 2002. Microsatellites in Zea-variability, patterns of mutations and use for evolutionary studies.Theor. Appl. Genet., 104, 436-450.
  • Mian, M.A.R., A.A. Hopkins., J.C. Zwonitzer, 2002.Determination of genetic diversity in tall fescue with AFLP markers. Crop Sci, 42, 944–950.
  • Miller, J.C. ve S.D. Tanksley, 1990.RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon.Theor. Appl. Genet., 80, 437–448.
  • Mullis, K.B. ve F. Faloona, 1987.Specific synthesis of DNA in vitro via polymerase chain reaction. Methods Enzymol, 155, 350–355.
  • Nakamura, Y., M. Leppert, P. O'Connell, R. Wolff ve ark.,, 1987. Variable number tandem repeat (VNTR) markers for human gene mapping. Science, 235, 1616-1622.
  • Palmer, J.D., 1992. Mitochondrial DNA in plant systematics: applications and limitations. Molecular Systematics of Plants, edited by P.S. Soltis, D.E. Soltis and J.J. Doyle, Chapman &Hall, London, 36– 39.
  • Powell, W., G.C. Machray, ve J. Provan, 1996. Polymorphism Revealed by Simple Sequence Repeats. Trends in Plant Science, 1(7), 215-221.
  • Provan, J., J.R. Russell, A. Booth, W. Powell, 1999a.Polymorphic chloroplast simple-sequence repeat primers for systematic and population studies in the genus Hordeum. Mol Ecol, 8, 505–511.
  • Provan, J., N. Soranzo, N.J. Wilson, D.B. Goldstein, W.A. Powell, 1999b. Low mutation rate for chloroplast microsatellites. Genetics, 153, 943–947.
  • Provan, J., W. Powell, P.M. Hollingsworth, 2001. Chloroplast microsatellites: new tools for studies in plant ecology and systematics. Trends Ecol Evol, 16, 142–147.
  • Sachidanandam, R., Weissman D., Schmidt S.C. ve ark.,, 2001. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms.Nature, 409, 928– 933.
  • Schlotterer, C., 2004. The evolution of molecular markers-just a matter of fashion? Nat. Rev. Genet., 5, 63-69.
  • Slatkin, M., 1987. Gene flow and population structure of natural populations. Science, 263: 787–792.
  • Sobrino, B., M. Briona, A. Carracedoa, 2005. SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci. Int., 154, 181–194.
  • Soleimani, V.D., B.R. Baum, D.A. Johnson, 2003. Efficient validation of single nucleotide polymorphisms in plants by allele-specific PCR, with an example from barley. Plant Mol Biol Rep, 21, 281– 288.
  • Soltis, D.E., P.S. Soltis, B.G. Milligan, 1992. Intra specific chloroplast DNA variation: systematics and phylogenetic implications. In: Soltis P.S., Soltis D.E. (eds.) Molecular plant systematics, Chapman and Hall, New York, 117–150.
  • Sperisen, C., U. Buchler, F. Gugerli, G. Ma´tya´s, T. Geburek, G.G. Vendramin, 2001. Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Mol Ecol, 10, 257–263.
  • Sunyaev S., J. Hanke, A. Aydin, U. Wirkner, I. Zastrow, J. Reich, P. Bork, 1999. Prediction of nonsynonymous single nucleotide polymorphisms in human disease-associated genes. J Mol Med, 77, 754–760.
  • Vos, P., R. Hogers, M. Bleeker, ve ark.,1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res., 23, 4407-4414.
  • Weiland, J.J. ve M.H. Yu, 2003. A cleaved amplified polymorphic sequence (CAPS) marker associated with root-knot nematode resistance in sugarbeet. Crop Sci, 43, 814–881.
  • Welsh, J. ve M. McClelland 1990.Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res, 18, 7213–7218.
  • Williams, J.G.K., A.R. Kublelik, K.J. Livak, J.A. Rafalski, S.V. Tingey 1990. DNA polymorphism's amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18, 6531- 6535.
  • Young, N.D., Menancio-Hautea D., Fatokun C.A., Danesh D. 1992. RFLP technology, crop mprovement and international agriculture. In G Thottappilly, LM Monti, DR Moham, AW Moore, eds, Biotechnology: Enhancing research on tropical crops in Africa. Technical Center for Agriculture and Rural Cooperation, International Institute of Tropical Agriculture, 221–230.
  • Zietkiewicz, E., A. Rafalski, D. Labuda, 1994. Genome fingerprinting by simple sequence repeats (SSR)anchored PCR amplification. Genomics, 20, 176183.