Yapraklı Ağaçlarda Trahe ve Liflerin Belirlenmesi

Görüntü işleme metotlarının uygulama alanlar her geçen gün artmakta ve endüstrinin farklı konularındaki problemlere çözüm olmaktadır. Bu çalışmada odun anatomisi için önemli olan trahe ve liflerin belirlenmesinde görüntü işleme algoritmaları kullanılmıştır. Bu parametrelerin odunda bulunma miktarları odunun kullanım alanlarını etkilediği için önemlidir. Çalışmada, yapraklı ağaç odunlarının enine kesitinden alınan mikroskobik görüntüler kullanılmıştır. Morfolojik işlemler kullanılarak, ilk olarak görüntülerden traheler belirlenmiştir. Belirlenen trahe bölgeleri orijinal görüntüden çıkarıldıktan sonra lifler belirlenmiştir. Bu parametrelerin görüntüdeki miktarları ve yüzde oranları çıkarılmıştır.

___

  • Schoch,W.,Heller,I.,Schweingruber,F.H.,Kienast,F.,2004. Wood anatomy of central European Species. Online version: www.woodanatomy.ch.
  • Güller, B., Fakir, H. 2009. Geniş Yapraklı Ağaçlarda Görüntü Analizi Yöntemi İle Trahe Çapı Ve Birim Alandaki Trahe Sayısının Belirlenmesi, Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 1, S: 83-94.
  • Güller, B., 2005. Görüntü Analizi Yöntemi İle Milimetre Karedeki Traheid Sayısının Belirlenmesi, Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 1, S: 132-142.
  • Dr. Jim L. Bowyer , Ruth L. Smith, 2000. The nature of wood and wood products, Forest Products, Management Development Institute.
  • Merev N., 2003. Odun Anatomisi, Karadeniz Üniversitesi Orman Fakültesi, genel yayın no:209, ISBN:975-6983-29-9, Trabzon.
  • Merev N., 2003. Odun Anatomisi ve Odun Tanıtımı, Karadeniz Üniversitesi Orman Fakültesi, ISBN:975-6983-30-2 Trabzon.
  • Bozlar, T., Gerçek, V., Yılmaz, S., & Usta, 2014. A. Kızılağaç Plantasyonlarında Odunun Anatomik Özellikleri Üzerine Yetişme Ortamının Etkileri, II. Ulusal Akdeniz Orman Ve Çevre Sempozyumu, 22-24 Ekim, Isparta
  • Gonzalez, R. C. and Woods, R. E., 2007. Digital Image Processing. Prentice Hall, 3rd edition.
  • Gurau, L., Timar, M. C., Porojan, M., & Ioras, F., 2013. Image processing method as a supporting tool for wood species identification. Wood and fiber Science, 45(3), 1-11.
  • Pan, S., & Kudo, M., 2012. Recognition of Wood Porosity Based on Direction Insensitive Feature Sets. Trans. MLDM, 5(1), 45-62.
  • Pan, S., & Kudo, M., 2011. Segmentation of pores in wood microscopic images based on mathematical morphology with a variable structuring element. Computers and Electronics in Agriculture, 75(2), 250-260.
  • Qi, H., Chen, F., Wang, H., 2008. Analysis of quantitative pore features based on mathematical morphology. Forestry Studies in China 10 (3), 193–198.
  • Wang,H., Qi, H., Li, W., Zhang, G., Wang,P., 2009. AGA-based automatic pore segmentation algorithm. In: Paper Presented at the Summit on Genetic and Evolutionary Computation, Shanghai, China, 2009.
  • Hermanson, J. C. and Wiedenhoeft A. C., 2011. A brief review of machine vision in the context of automated wood identification systems. IAWA J. 32(2): 233–250
  • Bond, B., 2002. Wood identification for hardwood and softwood species native to Tennessee. Agricultural Extension Service, University of Tennessee
  • Reid, J., Searcy, S., 1987. Vision-based guidance of an agricultural tractor. IEEE Control Systems Magazine 7 (2), 39–43.
  • Sogaard, H.T., Olsen, H.J., 2003. Determination of crop rows by image analysis without segmentation. Computers and Electronics in Agriculture 38 (2), 141–158.
  • Zehm, A., Nobis, M., Schwabe, A., 2003. Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants 198 (2), 142–160.
  • Laliberte, A.S., Rango, A., Herrick, J.E., Fredrickson Ed, L., Burkett, L., 2007. An object- based image analysis approach for determining fractional cover of senescent and green vegetation with digital plot photography. Journal of Arid Environments 69 (1), 1–14.
  • Zheng, L., Zhang, J., Wang, Q., 2009. Mean-shift-based color segmentation of images containing green vegetation. Computers and Electronics in Agriculture 65 (1), 93–98.
  • Tellaeche, A., Burgos-Artizzu, X.P., Pajares, G., Ribeiro, A., 2008. A vision based method for weeds identification through the Bayesian decision theory. Pattern Recognition 41 (2), 521–530.
  • Bakker, T., Wouters, H., Asselt van, K., Bontsema, J., Tang, L., Muller, J., Straten van, G., 2008. A vision based row detection system for sugar beet. Computers and Electronics in Agriculture 60 (1), 87–95. Onyango, C., Marchant, J.A., 2003. Segmentation of row crop plants from weeds using colour and morphology. Computers and Electronics in Agriculture 39 (3), 141–155.
  • Sarigul, E., Lynn Abbott, A., Schmoldt, D., 2003. Rule-driven defect detection in CT images of hardwood logs. Computers and Electronics in Agriculture 41 (1), 101–119.
  • Pla, F., Juste, F., 1995. A thinning-based algorithm to characterize fruit stems from profile images. Computers and Electronics in Agriculture 13 (4), 301–314.