Use of the far guide in alternative teaching models developed on structuring the topic of energy

Bu çalışmanın amacı FAR rehberliğinde geliştirilen alternatif öğretim modellerinin kullanımının öğrencilerin enerji konusunu yapılandırmalarına etkisini belirlemektir. Çalışma öntest-son test kontrol gruplu yarı deneme modelinde yapılmıştır. Çalışmada deney grubundaki öğrencilere enerji konusunu yapılandırmaları için FAR rehberliğinde geliştirilen alternatif öğretim modelleri konu ile ilgili yapılan her deneyden sonra kullanılmıştır. Araştırmaya Aydın ilinden dokuzuncu sınıf öğrencileri katılmıştır (n=52). Araştırmada veri toplama araçları olarak; enerji başarı testi, enerji ile ilgili görüşme soruları ve bilimsel modellerin rolü ölçeği kullanılmıştır. Araştırmanın sonunda deney grubundaki öğrencilerin enerji ile ilgili başarı düzeylerinde ve bilimsel modellere yönelik tutumlarında bir artma bulunmuştur

Enerji konusunun yapılandırılmasında far rehberliğinde geliştirilen alternatif öğretim modellerinin kullanımı

The objective of this study is to determine the impact of the use of alternative teaching models, under the leadership of the FAR Guide, on the ability of students to comprehend the topic of energy. After the experiment done related to each subject, modelling was performed to provide the students to configure such an abstract concept as ‘energy’ in their minds. The participants of the research was consisted of ninth grade students (n=52) existing in Aydin Province, Turkey. In the research, the pre-test post-test experimental model with a control group was used. The data collection tools were interview questions about energy, multiple choice energy achievement scale and the role of scientific models scale. At the end of the research, it was found that there is an increase in the physics achievement level and scientific models attitudes of students

___

  • Cartier, J. (2000). Using a modeling approach to explore scientific epistemology with high school students. Research report 99–1 for the National Center for Improving Student Learning and Achievement in Mathematics and Science. http://www.wcer.wisc.edu/ncisla/publications/reports/RR99–1.pdf. Accessed 11 May 2009.
  • Cartier, J., Rudolph, J. & Stewart, J. (2001). The nature and structure of scientific models. Working paper for the National Centre for Improving Student Learning and Achievement in Mathematics and Science (NCISLA) http://ncisla.wceruw.org/publications/reports/Models.pdf. Accessed 07 May 2009
  • Charles, C. M. (1998). Correlational research, introduction to educational research. (3th ed.), New York: an imprint of Addison Wesley Longman, Inc. Cohen, L., Manion, L. & Morrison, K. (2008). Interviews (Chapter 16). Research Methods in Education (349-382). Sixth Edition Routledge Taylor & Francis Group. London and New York.
  • Coll, R. K., France, B., & Taylor, I. (2005). The role of models/and analogies in science education: implications from research. International Journal of Science Education, 27(2): 183 — 198.
  • Greca, I. M., & Moreira, M. A. (2000) “Mental models, conceptual models, and modelling”, International Journal of Science Education, 22(1): 1 – 11.
  • Greca, I. M., & Moreira, M. A. (2002). Mental, physical, and mathematical models in the teaching and learning of physics [Electronic version]. Science Education, 1: 106-121.
  • Harrison, A. G., & Treagust, D. F. (1998). Modelling in science lessons: Are there better ways to learn with models? School Science and Mathematics, Dec 1998.
  • Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9): 1011–1026.
  • Heywood, D. (2002). The place of analogies in science education. Cambridge Journal of Education, 32(2): 233–246.
  • Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4): 369–387.
  • National Research Council. (1996). National Science Education Standards. Washington, DC: National Academy Press.
  • Ogborn, J. (1990). Energy, change, difference and danger. School Science Review, 72(259): 81-85.
  • Sibley, D. F. (2009). A cognitive framework for reasoning with scientific models. Journal of Geoscience Education, 57(4): 255-263
  • Sins, P. H. M., Savelsbergh, E. R., Joolingen, W. R van, & Van Hout- Wolters, B. H. A. M. (2009). The Relation between students' epistemological understanding of computer models and their cognitive processing on a modelling task. International Journal of Science Education, 31(9): 1205–1229.
  • Solomon, J. (1982). How children learn about energy or does the first law come first? School Science Review, 63(224): 415-422.
  • STTIS Project (2000). Science teacher training in an information society (STTIS) teacher workshop (UK) Teaching about energy, Activity Resources. Stylianidou, F. (1997). Children’s learning about energy and processes of change. School Science Review, 79(286): 91-97.
  • Treagust, D. F., Harrison, A. G., & Venville, G. (1998). Teaching science effectively with analogies: An approach for pre-service and in-service teacher education. Journal of Science Teacher Education, 9: 85-101.
  • Treagust, F. D. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4): 357-368.
  • Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4): 357 – 368.
  • Unal, Çoban, G., Aktamış, H., & Ergin, Ö. (2006). İlköğretim 8. Sınıf Öğrencilerinin Enerji ile İlgili Görüşleri. Kastamonu Eğitim Dergisi, 15(1):175-184.
  • Vosniadou, S. (2002). Mental models in conceptual development. In L. Magnani, N. Nersessian (Eds.), Model-based reasoning: Science, Technology, values. New York: Kluwer Academic Press.
  • Windschitl, M., & Thompson, J. (2006). Transcending simple forms of school science investigation: the impact of preservice instruction on teachers’ understandings of model-based inquiry. American Educational Research Journal, 43(4): 783–835