Tünel tipi indüksiyon fırını indüktörlerinde ısıtılacak parça çapının değişimine bağlı olarak sistem veriminin analizi
Bu çalışmada indüksiyon ısıtma sistemi kullanan alüminyum ekstrüzyon tesislerinde bobin dizayn çapındanfarklı çaplarda biyet ısıtılmasına bağlı olarak verim değişiminin deneysel ve sayısal modellemesi ile analizedilmesi hedeflenmiştir. Isınma deneylerinde ?178 mm alüminyum tavlama amaçlı imal edilen konik ısıtmaindüksiyon ocağı kullanılmıştır. Standart biyet çaplarına uygun çaplarda diskler aynı indüktör ile eş merkezlive eksantrik yerleşimli olarak denenmiştir. Ayrıca COMSOL programı yardımıyla indüksiyonlu ısıtmanın bilgisayar modellemesi yapılmış ve sonuçlar deney sonuçlarıyla karşılaştırılmıştır. Tünel tipi indüksiyonısıtma sistemi şeklinde imal edilen deney düzeneğinde disklerin bobin içine eş merkezli veya eksantrik olarakyerleştirilmesiyle malzeme sıcaklığının ve çekilen gücün %5 e kadar arttığı fakat ısıtma veriminindeğişmediği kanıtlanmıştır. Dolayısıyla malzemeyi bobinle eş merkezli yapmak için bazı ek mekanizmalaragerek olmadığı belirlenmiştir. Çalışmada ?178 mm biyetler için tasarlanmış bir indüksiyon bobininde farklı çaplı malzeme ısıtma durumunda kullanımı kolay bir verim fonksiyonu elde edilmiştir
Analysis of efficiency of tunnel type induction furnace inductors with respect to variationof diameter of heated workpiece
In this study, calculations of net efficiency of heating process of aluminum billets those diameters aredifferent from the diameter of the inductor were aimed. The targeted aluminum extrusion facilities utilizeinduction furnaces. In the heating experiments, an induction coil that was designed to heat ?178 mm aluminum billets was used. The discs diameters are in accordance with the standard billet diameters.Additionally, a computer simulation of induction heating of discs was performed and the results wereevaluated. It was observed that concentric or eccentric location of discs in the inductor induces an incrementin the disc temperature and electrical power consumption and contrarily does not affect the heatingefficiency. Therefore, it was determined that there is no need to construct some additional mechanisms to supply concentric location of the billet in the inductor. Finally, a user friendly efficiency scale function wasobtained for the ?178 mm inductor which is used for heating different diameter billets than the inductorsdesign diameter
___
- 1. Haimbaugh R.E. Practical Induction Heat Treating. ASM International, Ohio, 2001. doi: 10.1361/piht2001.
- 2. Lucía O., Maussion P., Dede E.J., Burdío J.M., Induction Heating Technology and Its Applications: Past Developments, Current Technology and Future Challenges, IEEE Transactions on Industrial Electronics, doi: 10.1109/TIE.2013.2281162. 61 (5), 2509-2520, 2014.
- 3. Eyidoğan M., Kaya D., Dursun Ş., Taylan O., Energy Saving And Emission Reduction Opportunities in an Industrial Annealing Furnaces, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (4), 735-743, 2014.
- 4. Unver U., Unver H.M., Comparison of Natural Gas Fired and Induction Heating Furnaces, Progress in Exergy, Energy, and the Environment, SPRINGER Part VI: Fuels and Combustion, doi: 10.1007/978-3-319- 04681-5_96., 1009-1016, 2014.
- 5. Kenada M., Hishikawa S., Tanaka T., Guo B., Nakaoka M., Innovative Electromagnetic Induction Eddy Current-Based Dual Packs Heater Using Voltage-Fed High-Frequency PWM Resonant Inverter for Continuous Fluid Processing in Pipeline, IEEE Engineering Technologies 2, 797-802, 1999.
- 6. Laohalertdecha S., Naphon P., Wongwises S., A review of Electrohydrodynamic Enhancement of Heat Transfer, Renewable and Sustainable Energy Reviews, doi:10.1016/j.rser.2005.07.002., 11, 858-876, 2007.
- 7. Unver H.M., Aydemir M.T., Çelik V., Power and Frequency Control in a 60 kW Induction Steel Heating Furnaces Through PLC, IEE Power Engineer, doi:10.1049/pe:20050307., 19 (3), 36-39, 2005.
- 8. Uzun O., Kilicaslan M.F., Yılmaz F., Formation of Novel Flower-Like Silicon Phases and Evaluation of Mechanical Properties of Hypereutectic Melt-Spun Al- 20Si-5Fe Alloys With Addition of V, doi:10.1016/j.msea.2014.04.025. Materials Science and Engineering: A, 607, 368-375, 2014.
- 9. http://www.efd-induction.com/en/~/media/PDF/ Applications /Applications.ashx. last access: 21.01.2016.
- 10. Tunçay T., Özyürek D., The Effects On Microstructure And Mechanical Properties Of Filtration In Al-Si-Mg Alloys, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (2), 271-279, 2014.
- 11. Karacif K., Kiyak T., İnem B., Coating of Aluminum With Conducting Polymer and Investigation of The Effect of Corrosion on Coating Microstructure, Journal of the Faculty of Engineering and Architecture of Gazi University. 25 (2), 235-241, 2010.
- 12. Fenercioğlu A., Kartal A., Determination of Recycling Performance of Some Non-Ferrous Metals Via Prototype Eddy Current Separator, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (2), 155-161, 2015.
- 13. Doğan A., Öney B., Experimental Investigation of Convection Heat Transfer From Aluminum Foam Heat Sinks, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (1), 71-78, 2014.
- 14. Öztürk A., Gülgeç M., Influence of The Material Properties on The Elastic-Plastic Deformation in a Heat Generating Composite Solid Cylinder, Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (2), 283-292, 2013.
- 15. Özsunar A., Peker G., A Numerical Investigation to The Effect of Porosity on The Cooling Curves of The Powder Cylinder Specimen for Quenching Processes, Journal of the Faculty of Engineering and Architecture of Gazi University, 25 (2), 299-309, 2010.
- 16. Tüzünalp K.K., Ünalan İ., Öksüz Y.T., Kocatepe K., A System Development for Directional Solidification of Commercially Pure Aluminum, Journal of the Faculty of Engineering and Architecture of Gazi University, 25 (2), 321-329, 2010.
- 17. Mansoor bin S., Ozsunar A., Yilbas B.S., A Numerical Formulation of Heat Conduction in Irregular, Static or Translating/Rotating, Planar Domains, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (4), 727-733, 2014.
- 18. Mahmoodkhani Y., Wells M.A., Co-extrusion process to produce Al-Mg eutectic clad magnesium products at elevated temperatures, Journal of Materials Processing Technology, 232, 175-183, 2016.
- 19. Yu J., Zhao G., Chen L., Investigation of Interface Evolution, Microstructure and Mechanical Properties of Solid-State Bonding Seams in Hot Extrusion Process of Aluminum Alloy Profiles, Journal of Materials Processing Technology, 230, 153-166, 2016.
- 20. Özışık N., Heat Conduction, John Wiley & Sons, Inc. New York. ISBN 0 471-53256-8., 145, 1993. Ünver ve Ünver / Journal of the Faculty of Engineering and Architecture of Gazi University 33:1 (2018) 155-165 165
- 21. Heisler M.P., Temperature Charts for Induction and Constant Temperature Heating., ASME Transactions 69, 227-36, 1947.
- 22. Bermúdez A., Gómez D., Muñiz M.C., Salgado P., Vázquez R., Numerical Modeling of Industrial Induction, Advances in Induction and Microwave Heating of Mineral and Organic Materials, InTech Press, doi: 10.5772/13525. ISBN 978-953-307-522-8, 75-100, 2011.
- 23. Öncü S., Bir Fazlı Yüksek Verimli Ev Tipi Bir İndüksiyon Isıtma Sistemi, Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, 2005.
- 24. Unver H.M., Unver U., Kelesoglu A. Introduction of a Novel Design Approach for Tunnel-Type Induction Furnace Coil for Aluminium Billet Heating, Arab J Sci Eng. https://doi.org/10.1007/s13369-017-2743-4, 2017.