Metanın kuru reformlanma reaksiyonunda indirgeme ve reaksiyon sıcaklıklarının mezogözenekli alümina destekli nikel katalizörlerin aktivitelerine ve karbon oluşumuna etkileri

Bu çalışmada reaksiyon sıcaklığının ve reaksiyon öncesi katalizör hazırlama basamaklarından biri olanindirgeme sıcaklığının katalizörün aktivitesine ve karbon oluşumuna etkisi incelenmiştir. Çalışmada yüksekyüzey alanına sahip mezogözenekli alümina malzemesi sol-jel yöntemiyle hazırlanmıştır. Farklı oranlardanikel içerikli (ağırlıkça %16 ve %8) katalizörler tek-kap ve emdirme yöntemiyle hazırlanarak farklıindirgeme sıcaklarında (550oC ve 750oC) indirgenmişlerdir. Metanın kuru reformlanma reaksiyonları 600oC ve 750oC sıcaklıkta dolgulu kolon reaktör sisteminde yürütülmüşlerdir. İndirgeme sıcaklığındaki artışın,katalizör yapısındaki nikelin metalik Ni formuna geçmesine ve nikel metallerinin sinterleşmesi nedeniylekristal boyutunu büyüterek metan dönüşümünü ve hidrojen seçiciliğini artırdığı belirlenmiştir. Yüksekreaksiyon sıcaklıklarında metanın kuru reformlanma reaksiyonu sırasında yan reaksiyonlar olarakgerçekleşen ters su gazı ve karbon oluşum reaksiyonları azaltılabilmektedir

Effect of reduction and reaction temperature on activities of mesoporous aluminasupported nickel catalysts and coke formation in dry reforming of methane

In this study effect of one of preparation steps, reduction temperature, and reaction temperature on activityof catalyst and coke formation were investigated. Mesoporous alumina materials were prepared by followinga sol-gel method. The catalysts with different nickel amount (16 wt% and 8 wt%) were synthesized via onepot and impregnation methods and reduced at different reduction temperatures (550oC and 750oC). Dry reforming of methane reaction was performed at 600oC and 750oC in a packed bed reactor system. It wasobserved that increase in the reduction temperature led nickel in the structure of the catalyst to form metallicNi and increased the crystal size of Ni through sintering and changed the fractional methane conversion andselectivity of hydrogen. At high reaction temperature occurrence of reverse water gas shift and cokeformation reactions as side reactions of dry reforming of methane could be reduced

___

  • 1. Elcik H., Çakmakcı M., Microalgae production and biofuel from microalgae, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 795-820, 2017.
  • 2. Sibisi N.T., Green J.M., A floating dome biogas digester: perceptions of energising a rural school in maphephetheni, Kwazulu-Natal, Journal of Energy in Southern Africa, 16 (3), 45-52, 2005.
  • 3. Yılmaz İ.T., Gümüş M., A research on biogas-diesel dual fuel diesel engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 919-927, 2017.
  • 4. Lapp H.M., Schulte D.D., Sparling, A.B., Buchanan, L.C., Methane production from animal wastes. I. Fundamental considerations, Canadian Agricultural Engineering, 17 (2), 97-102, 1975.
  • 5. Luyben W.L., Control of parallel dry methane and steam methane reforming processes for Fischer-Tropsch syngas, Journal of Process Control, 39, 77-87, 2016.
  • 6. Zonetti P.C., Gaspar A.B., Mendes F.M.T., Sobrinho E.V., Sousa-Aguiar E.F., Appel L.G., Fischer-Tropsch synthesis and the generation of DME in situ, Fuel Processing Technology, 91, 469-475, 2010.
  • 7. Usman M., Wan Daud W.M.A., Abbas H.F., Dry reforming of methane: influence of process parametersa review, Renewable and Sustainable Energy Reviews, 45, 710-744, 2015.
  • 8. Ancona M. A., Antonioni G., Branchini L., De Pascale A., Melino F., Orlandini V., Antonucci V., Ferraro M., Renewable energy storage system based on a Power-toGas conversion process, Energy Procedia 101, 854-861, 2016.
  • 9. Meric G.G., Arbag H., Degirmenci L., Coke minimization via sic formation in dry reforming of methane conducted in the presence of ni-based core shell microsphere catalysts, Int. J. Hydrogen Energy, 42 (26), 16579-16588, 2017.
  • 10. Jafarbegloo M., Tarlani A., Mesbah A.W., Sahebdelfar S., Thermodynamic analysis of carbon dioxide reforming of methane and its practical relevance, Int. J. Hydrogen Energy, 40, 2445-2451, 2015.
  • 11. Alipour Z., Rezaei M., Meshkani F., Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane, Journal of Industrial and Engineering Chemistry, 20, 2858-2863, 2014.
  • 12. Yu M., Zhu Y.A., Lu Y., Tong G., Zhu K., Zhou X., The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction, Applied Catalysis B: Environmental, 165, 43-56, 2015.
  • 13. Arora S., Prasad R., An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts, RSC Advances, 6, 108668-108688, 2016.
  • 14. Djinovic P., Batista J., Pintar A., Efficient catalytic abatement of greenhouse gases: methane reforming with CO2 using a novel and thermally stable Rh-CeO2 catalyst, Int. J. Hydrogen Energy, 37, 2699-2707, 2012.
  • 15. Hou Z., Chen P., Fang H., Zheng X., Yashima T., Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts, Int. J. Hydrogen Energy, 31, 555- 561, 2006.
  • 16. Coelho D.C., Oliveira A.C., Filho J.M., Oliveira A.C., Lucredio A.F., Assaf E.M., Rodríguez-Castellón E., Effect of the active metal on the catalytic activity of the titanate nanotubes for dry reforming of methane, Chemical Engineering Journal, 290, 438-453, 2016.
  • 17. Wolfbeisser A., Sophiphun O., Bernardi J., Wittayakun J., Föttinger K., Rupprechter G., Methane dry reforming over ceria-zirconia supported Ni catalysts, Catalysis Today, 277 (2), 234-245, 2016.
  • 18. Alotaibi R., Alenazey F., Alotaibi F., Wei N., Al-Fatesh A., Fakeeha A., Ni catalysts with differen Arbağ ve ark. / Journal of the Faculty of Engineering and Architecture of Gazi University 33:1 (2018) 63-73 72 supported on zeolite for dry reforming of methane, Applied Petrochemical Research, 5(4), 329-337, 2015.
  • 19. Arbag H., Yasyerli S., Yasyerli N., Dogu G., Activity and stability enhancement of Ni-MCM-41 catalysts by Rh incorporation for hydrogen from dry reforming of methane, Int. J. Hydrogen Energy, 35, 6, 2296-2304, 2010.
  • 20. Kim W.Y., Lee Y.H., Park H. Choi Y.H., Lee M.H., Lee J.S., Coke tolerance of Ni/Al2O3 nanosheet catalyst for dry reforming of methane, Catalysis Science & Technology, 6, 2060-2064, 2016.
  • 21. Yasyerli S., Filizgok S., Arbag H., Yasyerli N., Dogu G., Ru Incorporated Ni-MCM-41 mesoporous catalysts for dry reforming of methane: effects of Mg addition, feed composition and temperature, Int. J. Hydrogen Energy, 36, 4863-4874, 2011.
  • 22. Zhang X., Yang C., Zhang Y., Xu Y., Shang S., Yin Y., Ni-Co catalyst derived from layered double hydroxides for dry reforming of methane, Int. J. Hydrogen Energy, 40, 16115-16126, 2015.
  • 23. Ozkara-Aydinoglu S., Aksoylu E., Carbon dioxide reforming of methane over Co- X/ZrO2 catalysts (X=La, Ce, Mn, Mg, K), Catalysis Communications, 11, 1165- 1170, 2010.
  • 24. Masiran N., Vo D.N., Salam Md.A., Abdullah B., Improvement on coke formation of CaO-Ni/Al2O3 catalysts in ethylene production via dehydration of ethanol, In Procedia Engineering, 148, 1289-1294, 2016.
  • 25. Ghods B., Meshkani F., Rezaei M., Effects of alkaline earth promoters on the catalytic performance of the nickel catalysts supported on high surface area mesoporous magnesium silicate in dry reforming reaction, , Int. J. Hydrogen Energy, 41 (48), 22913- 22921, 2016.
  • 26. Estephane J., Ayoub M., Safieh K., Kaydouh M., Casale S., Zakhem H.E., CO2 reforming of CH4 over highly active and stable yRhNix/NaY catalysts, In Comptes Rendus Chimie, 18 (3), 277-282, 2015.
  • 27. Tankov I., Arishtirova K., Bueno J.M.C., Damyanova S., Surface and structural features of Pt/PrO2-Al2O3 catalysts for dry methane reforming, Applied Catalysis A: General, 474, 135-148, 2014.
  • 28. Nair M.M., Kaliaguine S., Structured catalysts for dry reforming of methane, New Journal of Chemistry, 40, 4049-4060, 2016.
  • 29. Sokolov S., Kondrotenko V.E., Pohl M., Barkschat A., Rodemerck U.., Stable low-temperature dry reforming of methane over mesoporous La2O3-ZrO2 supported Ni catalyst, Applied Catalysis B, 113-114, 19-30, 2012.
  • 30. Liu D., Lau R., Borgna B., Yang Y., Carbon dioxide reforming of methane to synthesis gas over Ni-MCM-41 catalysts, Applied Catalysis A: General, 358 110-118, 2009.
  • 31. Arbag H., Yasyerli S., Yasyerli N., Dogu G., Dogu T., ?rnivec I.G.O., Pintar A., Coke Minimization during conversion of biogas to syngas by bimetallic tungsten-nickel incorporated mesoporous alumina synthesized by the one-pot route, Ind. Eng. Chem. Res., 54, 2290-2301, 2015.
  • 32. Arbag H., Yasyerli S., Yasyerli N., Dogu T., Dogu G., Coke minimization in dry reforming of methane by ni based mesoporous alumina catalysts synthesized following different routes: effects of W and Mg, Topics in Catalysis, 56, 1695-1707, 2013.
  • 33. Fakeeha A.H., Khan W.U., Al-Fatesh A.S., Abasaeed A.E., Stabilities of zeolite-supported Ni catalysts for dry reforming of methane, Chinese Journal of Catalysis, 34, 764-768, 2013.
  • 34. Tsygano A., Inaba M., Tsunoda T., Uchida K., Rational design of Mg-Al mixed oxide-supported bimetallic catalysts for dry reforming of methane, Applied Catalysis A, 292, 328-343, 2005.
  • 35. Arbag H., Yasyerli S., Yasyerli N., Dogu G., Dogu T., Effects of reduction temperature on activity and coke resistance of mesoporous alumina supported Ni catalysts for dry reforming of methane, 5th National Catalysis Conference, Çukurova Üniversitesi, Adana, Türkiye, 23-26 Nisan 2014.
  • 36. Arbag H., Yasyerli S., Yasyerli N., Dogu G., Dogu T., Effect of reaction temperature on coke formation in dry reforming of methane, 6th National Catalysis Conference, Bursa Teknik Üniversitesi, Bursa, Türkiye, 27-30 Nisan 2016.
  • 37. Taşdemir H.M., Yaşyerli N., The investigation of urea decomposition over Ag/Alumina catalysts, Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (3), 523-532, 2013.
  • 38. Arslan A., Gunduz S., Dogu T., Steam reforming of ethanol with zirconia incorporated mesoporous silicate supported catalysts. Int. J. Hydrogen Energy, 39, 18264- 18272, 2014.
  • 39. Karaman B.P., Cakiryilmaz N., Arbag H., Oktar N., Dogu G., Dogu T., Performance comparison of mesoporous alumina supported Cu & Ni based catalysts in acetic acid reforming, Int. J. Hydrogen Energy, 42 (42), 26257-26269, 2017.
  • 40. Yaşyerli S., Aktaş Ö., MCF supported V-MO-NB catalysts prepared by direct hydrothermal synthesis and impregnation methods for oxidative dehydrogenation of propane, Journal of the Faculty of Engineering and Architecture of Gazi University, 27 (1), 49-58, 2012.
  • 41. Yuan Q., Yin A., Luo C., Sun L., Zhang Y., Duan W., Liu H., Yan C., Facile synthesis for ordered mesoporous ?-aluminas with high thermal stability, Journal of American Chemical Society, 130, 3465-3472, 2008.
  • 42. Niesz K., Yang P., Somorjai G.A., Sol-gel synthesis of ordered mesoporous alumina, Chem. Commun., 15, 1986-87, 2005. 43. Fidalgo B., Zubizarreta L., Bermúdez J.M., Arenillas A., Menéndez J.A., Synthesis of carbon-supported nickel catalysts for the dry reforming of CH4, Fuel Processing Technology, 91, 765-769, 2010. 44. Kim P., Kim Y., Kim H., Song I.K., Yi J., Synthesis and characterization of mesoporous alumina with nickel incorporated for use in the partial oxidation of methane Arbağ ve ark. / Journal of the Faculty of Engineering and Architecture of Gazi University 33:1 (2018) 63-73 73 into synthesis gas, Applied Catalysis A: General, 272, 157-166, 2004.
  • 45. Hou Z., Yokota O., Tanaka T., Yashima T., Characterization of Ca-promoted Ni/?-Al2O3 catalyst for ch4 reforming with CO2, Applied Catalysis A: General, 253, 381-387, 2003.
  • 46. Loviat F., Czekaj I., Wambach J., Wokaun A., Nickel deposition on ?-al2o3 model catalysts: an experimental and theoretical investigation, Surface Science, 603, 2210-2217, 2009.
  • 47. Nagaoka K., Takanabe K., Aika K., Influence of the reduction temperature on catalytic activity of Co/TiO2 (anatase-type) for high pressure dry reforming of methane, Applied Catalysis A: General, 255, 13-21, 2003.
  • 48. Lucrédio A.F., Assaf J.M., Assaf E.M., Reforming of a model sulfur-free biogas on Ni catalysts supported on Mg(Al)O derived from hydrotalcite precursors: effect of La and Rh addition, Biomass and Bioenergy, 60, 8-17, 2014.
  • 49. Li W., Zhao Z., Jiao Y., Dry reforming of methane towards CO-rich hydrogen production over robust supported Ni catalyst on hierarchically structured monoclinic zirconia nanosheets, Int. J. Hydrogen Energy, 41 (40), 17907-17921, 2016.
  • 50. Cai W., Ye L., Zhang L., Ren Y., Yue B., Chen X., He H., Highly dispersed nickel-containing mesoporous silica with superior stability in carbon dioxide reforming of methane: the effect of anchoring, Materials, 7 (3), 2340-2355, 2014.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ