Ötektik Al-Si alaşımında soğutucu yüzey pürüzlülüğünün arayüzey ısı transfer katsayısına etkisi

Ara yüzey ısı transfer katsayısının metalden kalıba olan ısı transfer oranı üzerinde önemli rolü vardır. Dökümlerin makro ve mikro yapıları esas olarak ısı transfer oranına bağlıdır. Bu çalışmanın amacı su soğutmalı çelik soğutucu (H13) üzerinde tek yönlü dikey olarak katılaşan ötektik Al-Si alaşımında soğutucu yüzey pürüzlülüğünün ara yüzey ısı transfer katsayısına etkisini incelemektir. Ara-yüzey ısı transfer katsayısı soğutucu yüzey pürüzlülüğüne bağlı olarak, Sonlu Farklar Metoduna dayalı FORTRAN programı ile belirlenmiştir. Sonuç olarak; ısı transfer katsayısı soğutucu yüzey pürüzlülüğü azaldıkça artmıştır, maksimum ısı transfer katsayısı değerleri; 0.15 $mu$ m soğutucu yüzey pürüzlülüğünde 3320 W/$m^2$K, 0.22 $mu$ m soğutucu yüzey pürüzlülüğünde 3302 W/$m^2$K ve 2.47 $mu$ m soğutucu yüzey pürüzlülüğünde 2954 W/$m^2$K olarak elde edilmiştir, ara yüzey ısı transfer katsayıları zamanın güçlü bir fonksiyonu olarak belirlenmiştir, nümerik çözümün hassaslığı Fourier sayısı azaldıkça artmıştır, optimum çözüm hesaplama zamanı göz önünde tutularak Fo=0.0625 ve $Delta$x=0.25 mm ile elde edilmiştir.

The effect of surface roughness of chill on the interfacial heat transfer coefficient in eutectic Al-Si casting

The interfacial heat transfer coefficient plays an important role in the rate of heat transfer from the metal to the mould. The macro and microstructures of castings are mainly related on the heat transfer rate. The objective of the present work was to investigate the effect of surface roughness of chill on the interfacial heat transfer coefficient (IHTC) for vertically upward unidirectional solidification of a eutectic Al-Si casting on water cooled steel chills during solidification. The interfacial heat transfer coefficient measured as a function of different surface roughness of the chill was determined by using finite difference method solving FORTRAN language. The obtained results; the heat transfer coefficients increases as chill surface roughness decreases, the maximum heat transfer coefficient values were obtained; 3320 W/$m^2$K with 0.15 µm, 3302 W/$m^2$K with 0.22 $mu$ m and 2954 W/$m^2$K with 2.47 $mu$ m chill surface roughness, the interfacial heat transfer coefficients have been expressed as a power function of time, the sensitivity of numerical solution increased as Fourier number decreases, the optimum solution were achieved with Fo=0.0625 and $Delta$x=0.25 mm by considering the calculation time.

___

  • 1. H. M. Şahin, K. Kocatepe, R. Kayıkcı ve N. Akar “Determination of Unidirectional Heat Transfer Coefficient during Unsteady State Solidification at Metal Chill Interface” Energy Conversion and Management, (Accepted on 30 March 2005, in press).
  • 2. Fortin, G., Louchez, P., Samuel, F. H., “Factors Controlling Heat Transfer Coefficients at the Metal-Mold Interface During Solidification of Aluminum Alloys: An Analytical Study” AFS Transactions, Vol 100, 863-871, 1992.
  • 3. Hartley, J.G., Patterson, J.A.L., “The Influence of Temperature, Moisture Content and Binder Content on the Conductivity of Dried BentoniteBonded Zirkon and Silica Sands”, AFS Transactions, Vol 91, 183-190, 1983.
  • 4. Griffiths,W.D., “The Heat-Transfer Coefficient During the Unidirectional Solidification of an AlSi Alloy Casting”, Metallurgical And Materials Transactions , Vol 30B, 437-482, 1999.
  • 5. Poirier D.R., and Poirier E.J., “Heat Transfer Fundamentals for Metal Castings”, The Mineral, Metals and Materials Society, ABD, 1992.
  • 6. Prabhu, K.N., Srinivas, G., Venkataraman, N., “Modeling Heat Transfer and Soldification Behavior of Gravity Diecast Al-Cu-Si Alloy (LM21) Plates”, AFS Transactions, Vol 101, 653- 659, 1999.
  • 7. Kannaiah, P., Narayana, K.L., Roshan, H. Md., “Thermal Properties of Molding Sands: CastingOver Probe Embedded Specimen Method”, AFS Transactions, Vol 95, 591-600, 1987.
  • 8. Hartley, J.G., Babcock, D., Berry, J.T., “The Thermal Conductivity of Bentonite-Bonded Molding Sands”, AFS Transactions, Vol 89, 469-476, 1981.
  • 9. Bandyopadhyay, B.P., Joshi, M.D., Chakraborty, P.N., “A Transient Method of Simultaneous Measurement of Thermal Properties of Moulding Sand Using Plane Heat Source”, British Foundryman, Vol 77, 318-321, 1984.
  • 10. Seshadri, M.R., Ramachandran, A., “Mold Materials Thermal Properties”, AFS Transactions, Vol 69, 616-624, 1961.
  • 11. Muojekwu, C.A., Samarasekera, I.V., Brimacombe, J.K., “Heat transfer and Microstructure during the Early Stages of Metal Solidification”, Metallurgical and Materials Transactions B, Vol 26, 361-382, 1995.
  • 12. Michel, F., Louchez, P. R., Samuel, F. H., “Heat Transfer Coefficient during Solidification of AlSi Alloys: Effects of Mold Temperature, Coating Type and Thickness”, AFS Transactions, Vol 103, 275-283, 1995.
  • 13. Krishnan M and Sharma D.G.R, “Determination of Heat Transfer Coefficient Between Casting and Chill in Unidirectional Heat Flow”, AFS Transactions, Vol 102, 769-774, 1994.
  • 14. Biloni H and Chalmers B., “Predendritic Solidification”, Trans. Met. Soc. (AIME), Vol 233, 373-379, 1965.
  • 15. Prates M and Biloni H., Variables Affecting the Nature of the Chill Zone”, Met. Trans., Vol 3, 1501-1510, 1972.
  • 16. Ho, K., Pehlke, R.D., “Mechanisms of Heat Transfer at a Metal-Mold Interface”, AFS Transactions, Vol 92, 587-598, 1984.
  • 17. El-Mahallawy N.A, and Assar A.M., “Effect of Melt Superheat on Heat Transfer Coefficient for Aluminium Solidifying against Copper Chill”, J. Materials Science, Vol 26, 1279-1733, 1991.
  • 18. Taha M.A, El-Mahallawy N.A, Assar A.W.M and Hammouda R.M., “Effect of Melt Superheat and Chill Material on Interfacial Heat-Trasnfer Coefficient in end-chill Al and Al-Cu Alloy Castings”, J. Materials Science, Vol 27, 3467- 3473, 1992.
  • 19. Todoroki H, Lertarom L, Suziki T and Crumb A.W., “Heat Transfer Behaviour of Pure Iron and Nickel against a Water Cooled Copper Mold During Inıtıal Stage of Solidification”, Proceedings of 1997 Iron Making Conference, 731-742, 1997.
  • 20. Sun R., “Simulation and Study of Surface Conductance for Heat Flow in the Early Stage of Casting” AFS Cast Metals Research Journal, Vol 6, 105-110, 1970.
  • 21. Tadayon M.R and Lewis R.W, “A Model of Metal-Mould Interfacial Heat Transfer for Finite Element Simulation of Gravity-diecasting”, Cast Metals, Vol 1, 24-28, 1988.
  • 22. Davies, V.L., “Heat Transfer in Gravity Diecastings”, British Foundrymen, Vol 73 331-334, 1980.
  • 23. Chiesa, F, “Measurement of the Thermal Conductance at the Mold-Metal Interface of Permanent Molds”, AFS Transactions, Vol 98,193-200, 1990.
  • 24. Nyamekye, K., Wei, S., Askeland, D., Voigt, R.C., Pischel, R.P., Rasmussen, W., Ramsay, C., “A Rewiew of Permanent Mold Coating and Their Effect on Heat Transfer in the Mold”, AFS Transaction, Vol 101, 869-876, 1994.
  • 25. Assar, A.M., “Mould Surface Roughness and Interface Heat Transfer using Heat Flow Model”, Materials Science and Technology, Vol 13, 702-704, 1997.
  • 26. Özışık, M. N., “Finite Difference Methods in Heat Transfer”, Mechanical and Aerospace Engineering Department, North Carolina State University, ABD, 1994.
  • 27. Incropera, F., P., Dewitt, D., P., “Fundamentals of Heat and Mass Transfer”, John Wiley&Sons, Purdue University, School of Mechanical Engineering, ABD, 1996.Hallam, C.P., Griffiths, W.D., “A Model of the Interfacial Heat Transfer Coefficient for The Alüminum Gravity Die Casting Process”, Materials and Metallurgical Transactions, Vol 35, 721-733, 2004.
  • 28. Taha, M.A., El-Mahallawy, N.A., El-Mestekawi, M.T., Hassan, A. A., “Estimation of Air Gap and Heat Transfer Coefficient at Different Faces of Al and Al-Si Casting Solidifying in Permanent Mould”, Materials Science and Technology, Vol 17, 1093-1101, 2001.
  • 29. Wang,G.-X., Matthys, E.F., “Experimental Determination of the Interfacial Heat Transfer during Cooling and Solidification of Molten Metal Droplets Impacting on A Metallic Substrate: Effect of Roughness and Superheat”, International Journal of Heat and Mass Transfer, Vol 45, 4967–4981, 2002.
  • 30. Santos, C.A., Quaresma, J.M.V., Garcia, A., “Determination of Transient Interfacial Heat Transfer Coefficients in Chill Mold Casting”, Journal of Alloys and Compaunds, Vol 319, 174-186, 2001.
  • 31. Santos, C.A., Siqueira, C.A., Garcia, A., Quaresma, J.V.M., Spim, J.A., “Metal/Mold Heat Transfer Coefficients during Horizontal and Vertical UnsteadyState Solidification of Al-Cu and Sn-Pb Alloys”, 4th International Conference on Inverse Problems in Engineering, Rio de Janeiro, Brazil, 2002.
  • 32. Osorio, W.R., Garcia, A., “Modeling Dendritic Structure and Mechanical Properties of Zn–Al Alloys as A Function of Solidification Conditions”, Materials Science and Engineering A, Vol 325, 103–111, 2002.
  • 33. Siqueira, C.A., Cheung, N., Garcia, A., “The Columnar To Equiaxed Transition during Solidification of Sn–Pb Alloys”, Journal of Alloys and Compounds, Vol 351, 126–134, 2003.
  • 34. Peres, M.D., Siqueira, C.A., Garcia, A.,”Macrostructural and Microstructural Development in Al–Si Alloys Directionally Solidified under Unsteady-State Conditions”, Journal of Alloys and Compounds, Vol 381,168–181, 2004.
  • 35. Santos, C.A., Siqueira, C.A.,Garcia, A., Quaresma, J.M.V., Spim, J.A., “Metal–Mold Heat Transfer Coefficients during Horizontal and Vertical UnsteadyState Solidification of Al–Cu and Sn–Pb Alloys”, Inverse Problems in Science and Engineering, Vol 12, 279–296, 2004.
  • 36. Sá,F., Rocha,O.L., Siqueira, C.A., Garcia, A., “The Effect of Solidification Variables on Tertiary Dendrite Arm Spacing in Unsteady-State Directional Solidification of Sn–Pb And Al–Cu Alloys”, Materials Science and Engineering A , Vol 373, 131–138 2004.
  • 37. Spinelli, J.E., Rosa, D.M., Ferreira, I.L., Garcia, A., “Influence of Melt Convection On Dendritic Spacings of Downward Unsteady-State Directionally Solidified Al–Cu Alloys”, Materials Science and Engineering A, Vol 383, 271–282, 2004.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ