Ölçeklendirilen yakın saha deprem kayıtlarının farklı doğrultularda etkimesi durumunda yalıtım birimi maksimum yer değiştirmelerinde gözlenen değişim

Bu çalışmada, sismik taban izolasyonu uygulaması kurşun çekirdekli kauçuk yalıtım birimleri (KÇKYB)kullanılarak gerçekleştirilen bir yapıda, maksimum izolatör deplasmanlarındaki (MİD) değişim deprem etkimeaçısına bağlı olarak incelenmiştir. Bu amaçla, seçilen deprem kayıtlarının orijinal halleri 10º aralıklarla 180ºboyunca döndürülerek aynı deprem hareketinin farklı etkime açılarına sahip versiyonları oluşturulmuştur.Yürütülen doğrusal olmayan dinamik analizlerde, dikkate alınan deprem hareketine ait her iki yatay deprembileşeni oluşturulan yapısal modele eş zamanlı olarak tatbik ettirilmiştir. Analizlerde kullanılan depremhareketleri, yakın saha kaynaklı kayıtlar arasından seçilmiş olup, tasarım deprem (TD) ve maksimum deprem(MD) seviyelerini temsil edecek şekilde ölçeklendirilmiştir. Analizlerde, maruz kalınan harekete bağlı olarakKÇKYB’nin histeretik eğrilerinde, kurşun çekirdekteki ısınmaya bağlı, dayanım kaybını dikkate alabilenmalzeme modeli kullanılmıştır. Ayrıca, incelemeye konu olan deprem etkime açısına bağlı MİD’deki değişiminizolasyon periyoduna olan hassasiyetini belirleyebilmek adına dört farklı özellikte izolatör tasarlanmıştır.Yapılan analizler sonucunda, orijinal deprem kayıtlarının döndürülmesi sonucu MİD’deki artışın ihmaledilebilir seviyede (ortalama olarak %2 mertebesinde) olduğu gözlenmiştir. Bu artış miktarının TD ve MDseviyeleri için farklılaşmadığı tespit edilmiştir. Ayrıca, deprem hareketinin farklı etkime açısına bağlı olarakortaya çıkan MİD’deki artışın, izolasyon periyodundaki değişimden etkilenmediği görülmüştür.

Change in maximum isolator displacements due to change in orientation of scaled near field ground motion records

In this study, the change in maximum isolator displacements (MIDs) of a seismically isolated structure is studied as a function of ground motion orientation. The isolator units of the analyzed structure is composed of lead rubber bearings (LRBs). For this purpose, selected as-recorded original forms of ground motions are rotated from 0º to 180º with 10º increments to obtain new records with different orientations. In nonlinear response history analyses, both horizontal components of ground motion records are subjected to structure simultaneously. Employed motions are representative of near-field records and scaled to represent two different seismicity levels namely, design based earthquake (DBE) and maximum considered earthquake (MCE). In the analyses, a deteriorating hysteretic behavior, where the deterioration is a function of temperature rise in the lead core, is used to idealize LRBs. Furthermore, to find the effect of isolation period on this amplification, the isolation period is considered to be a parameter. Thus, four different isolators are designed. The analyses results revealed that the variation in MIDs due to change in ground motion orientation is negligible and approximately equals to 2% in an average sense. Same observation is valid for seismicity levels of both DBE and MCE. Also, isolation period is found to be an ineffective parameter in terms of variation in MID when different orientation of motions is of concern.

___

  • Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı, Ankara, Türkiye, 2007.
  • Constantinou M.C., Adnane M.A., Dynamics of SoilBase-Isolated Structure Systems: Evaluation of Two Models for Yielding Systems, Report to NSF, Drexel University, Philadelphia, 1987.
  • Park Y.J., Wen Y.K., Ang A.H., Random Vibration of Hysteretic Systems Under Bi-Directional Ground Motions, Earthquake Engineering and Structural Dynamics (Earthquake Eng. Struct. Dyn.), 14 (4), 543- 557, 1986.
  • Huang Y.N., Performance Assessment of Conventional and Base-Isolated Nuclear Power Plants for Earthquake and Blast Loadings, PhD Thesis, State University of New York, Buffalo, 2008.
  • Avsar O., Ozdemir G., Response of Seismic-Isolated Bridges in Relation to Intensity Measures of Ordinary and Pulselike Ground Motions, Journal of Bridge Engineering (J. Bridge Eng.), 18 (3), 250-260, 2013.
  • Somerville P.G., Smith N.F., Graves R.W., Abrahamson N.A, Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity, Seismological Research Letters (Seismol. Res. Lett.), 68 (1), 199-222, 1997.
  • Ozdemir G., Gulkan P., Scaling Legitimacy for Design of Lead Rubber Bearing Isolated Structures Using a Bounding Analysis, Earthquake Spectra, 32 (1), 345- 366, 2016.
  • Dicleli M., Performance of seismic-isolated bridges in relation to near-fault ground-motion and isolator characteristics, Earthquake Spectra, 22 (4), 887-907, 2006.
  • Ozdemir G., Constantinou M.C., Evaluation of equivalent lateral force procedure in estimating seismic isolator displacements, Soil Dynamics and Earthquake Engineering (Soil Dyn. Earthquake Eng.), 30 (10), 1036-1042, 2010.
  • Ozdemir G., Bayhan B., Response of an Isolated Structure with Deteriorating Hysteretic Isolator Model, Research on Engineering Structures and Materials, 1 (1), 1-9, 2015.
  • Ozdemir G., Formulations for Equivalent Linearization of LRBs in order to Incorporate Effect of Lead Core Heating, Earthquake Spectra, 31 (1), 317-337, 2015.
  • Ozdemir G., Lead Core Heating in LRBs Subjected to Bidirectional Ground Motion Excitations in Various Soil Types, Earthquake Engineering and Structural Dynamics (Earthquake Eng. Struct. Dyn.), 43 (2), 267- 285, 2014.
  • Ozdemir G., Dicleli M., Effect of lead core heating on the seismic performance of bridges isolated with LRB in near‐fault zones, Earthquake Engineering and Structural Dynamics (Earthquake Eng. Struct. Dyn.), 41 (14), 1989-2007, 2012.
  • Ozdemir G., Avsar O., Bayhan B., Change in Response of Bridges Isolated with LRBs due to Lead Core Heating, Soil Dynamics and Earthquake Engineering (Soil Dyn. Earthquake Eng.), 31 (7), 921-929, 2011.
  • Kalpakidis I.V., Constantinou M.C., Effects of Heating on the Behavior of Lead-Rubber Bearing. II: Verification of Theory, Journal of Structural Engineering (J. Struct. Eng.), 135 (12), 1450-1461, 2009.
  • Kalpakidis I.V., Constantinou M.C., Effects of Heating on the Behavior of Lead-Rubber Bearing. I: Theory, Journal of Structural Engineering (J. Struct. Eng.), 135 (12), 1440-1449, 2009.
  • Robinson W.H., Lead‐rubber hysteretic bearings suitable for protecting structures during earthquakes, Earthquake Engineering and Structural Dynamics (Earthquake Eng. Struct. Dyn.), 10 (4), 593-604, 1982.
  • Warn G.P., Whittaker A.S., Performance estimates in seismically isolated bridge structures, Engineering Structures (Eng. Struct.), 26 (9), 1261-1278, 2004.
  • Soyluk A., Tuna M.E., Effect of Seismic Base Isolation Usage on the Architectural Design of Irregular Buildings, Journal of the Faculty of Engineering and Architecture of Gazi University, 26 (3), 635-642, 2011.
  • FEMA 451. National Earthquake Hazard Reduction Program (NEHRP), Recommended Provisions: Design Examples, Building Seismic Safety Council, National Institute of Building Sciences, Washington, 2006.
  • OpenSees, Pacific Earthquake Engineering Research Center, University of California, Berkeley. http://opensees.berkeley.edu, 2009.
  • Erişgen G., Depremin Geliş Açısının Sismik İzolasyonlu Binalara Etkisi, Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2010.
  • Kalkan E., Reyes J.C., Significance of Rotating Ground Motions on Behavior of Symmetric- and Asymmetricplan Structures: Part 2. Multi-story Structures, Earthquake Spectra, 31 (3), 1613-1628, 2015.
  • Moschonas I.F., Kappos A.J., Assessment of concrete bridges subjected to ground motion with an arbitrary angle of incidence: static and dynamic approach, Bulletin of Earthquake Engineering (Bull. Earthquake Eng.), 11 (2), 581-605, 2013.
  • Kostinakis K.G., Athanatopoulou A.M., Avramidis I.E., Evaluation of inelastic response of 3D single-story R/C frames under bi-directional excitation using different orientation schemes, Bulletin of Earthquake Engineering (Bull. Earthquake Eng.), 11 (2), 637-661, 2013.
  • Rigato A.B., Medina R.A., Influence of angle of incidence on seismic demands for inelastic single-storey structures subjected to bi-directional ground motions, Engineering Structures (Eng. Struct.), 29 (10), 2593- 2601, 2007.
  • Athanatopoulou A.M., Critical orientation of three correlated seismic components, Engineering Structures (Eng. Struct.), 27 (2), 301-312, 2005.
  • Türkiye Bina Deprem Yönetmeliği, Başbakanlık Afet ve Acil Durum Yönetimi Başkanlığı, Ankara, 2018.
  • Eurocode 8: Design of Structures for Earthquake Resistance Part 2: Bridges. EN 1998-2, 2005.
  • American Society of Civil Engineers (ASCE). Minimum design loads for buildings and other structures. Standard ASCE/SEI 7-10, Reston, VA 2010.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ