Merkezi çaprazlı çerçevelerde dayanım farklılığı sonucu oluşan burulma etkileri

Bu çalışma, çapraz elemanların dayanımındaki rastlantısal farklardan dolayı merkezi çaprazlı çerçeveler(MÇÇ) kullanılarak tasarlanmış yapıların kuvvetli deprem yer hareketleri altında sergilediği burulmadavranışını incelemeyi amaçlamıştır. Bu çalışmada, çaprazlardaki dayanım farklılığının, çaprazın gerçekdayanımının minimum akma gerilmesinden (Fy) değil, arttırılmış (beklenen) akma gerilmesinden (RyFy) kaynaklandığı kabulü yapılmıştır. Bu amaçla alçak ve orta katlı yapıları temsilen, üç ve dokuz katlı dışçerçeveleri MÇÇ olarak tasarlanmış farklı çapraz dayanım konfigürasyonlarına sahip iki yapıdaki burulmanedeniyle oluşabilecek doğrusal olmayan davranış kuvvetli deprem yer hareketleri altında incelenmiştir.Yapının kapasite eğrisi farklı durumlar için elde edilmiştir ve zaman tamın alanında doğrusal olmayan analizyöntemi ile belirlenen göreli kat ötelemesi oranları sunulmuştur

Relative story displacements and torsional effects caused by strength variations in concentrically braced frames

This study will investigate the accidental torsional response in steel structures designed by CBFs due to thevariation in strength of braces under strong earthquake ground motions. For this study, it is assumed that thevariation in strength of braces would come from the expected yield stress (RyFy) rather than minimum specified yield stress (Fy) of brace member. For this purpose, inelastic torsional response of a three and ninestory building having perimeter CBFs having various brace strength configurations subjected to strongearthquake ground motions is investigated in detail. The results are presented in the form of base shear vs.roof displacement (pushover curve, capacity curve) and drift ratio through nonlinear dynamic responseanalyses

___

  • 1. Comlek R., Akbas B., Shen J., Sutchiewcharn N., Wen R., Umut O., Inelastic Torsional Response of Steel Concentrically Braced Frames, 15th World Conference on Earthquake Engineering, Lisbon-Portugal, Paper no: 3917, 24-28 September, 2012.
  • 2. Deger Z.T., Damage assessment of a reinforced concrete test building based on Turkish Seismic Code 2007, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 481-488, 2017.
  • 3. Er Ş.B., Aykaç S., Can H., Behaviour of Reinforced Concrete Weak Column-Beam Connections, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (3), 537-547, 2014.
  • 4. Beyen K., Damage simulation by finite element updating using vibration characteristics, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 403-415, 2017.
  • 5. Gerek A.E., Soyluk A., Investigation of earthquake resistance at primary school buildings in Turkey, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 485-490, 2016.
  • 6. Tremblay R., Archambault M.H., Filiatrault A., Seismic Response of Concentrically Braced Steel Frames Made with Rectangular Hollow Bracing Members, Journal of Structural Engineering, 129 (12), 1626-1636, 2003.
  • 7. Tremblay R., Poncet L., Seismic Performance of Concentrically Braced Steel Frames in Multistory Buildings with Mass Irregularity, Journal of Structural Engineering, 131 (9), 1363-1375, 2005.
  • 8. Erduran E., Ryan K.L., Effect of Torsion on the Behavior of Peripheral Steel-Braced Frame Systems, Earthquake Engineering and Structural Dynamics. 40, 491-507, 2011.
  • 9. Cakir F., Kaya E.S., Aksar B., Shen J., Seker O., Akbas B., Merkezi Çaprazlı Çerçevelerde Çapraz Elemanlarda Sayısal Modelleme Teknikleri, 6ncı Çelik Yapılar Sempozyumu, Eskişehir, 15-17 Ekim, 2015.
  • 10. FEMA, Quantification of Building Seismic Performance Factors, FEMA P695, Federal Emergency Management Agency, Washington, DC, 2009.
  • 11. Kaymak F., Tuna M.E., Investigation of the behaviour of steel frames with the partial and full infill walls under horizontal loads with elasto-plastic methods, Journal of the Faculty of Engineering and Architecture of Gazi University, 26 (2), 435-445, 2011.
  • 12. Akbas B., Sutchiewcharn N., Cai W., Wen R., Shen J., Comparative study of special and ordinary braced frames, Struct. Design Tall Spec. Build. 22 (13), 989- 1022, 2013
  • 13. AISC 341-10, Seismic Provisions for Steel Structural Buildings, American Institute of Steel Construction, Chicago, IL, 2010.
  • 14. SAP2000, Structural Analysis Program, Version 14.2.2, 1995.
  • 15. PERFORM-3D, Nonlinear Analysis and Performance Assessment for 3D Structures, Version 5.0.0, 2011.
  • 16. Nip K.H., Gardner L., Elghazouli A.Y., Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members, Engineering Structures, 32, 424-441, 2010.
  • 17. Peer Strong Ground Motion, http://peer.berkeley.edu/products/strong_ground_motio n_db.html.
  • 18. ASCE 7, Minimum Design Loads for Buildings and Other Structures, ASCE 7-10, American Society of Civil Engineers, Reston, VA, 2010.