Marş motoru akım sinyalleri wavelet analiz sonuçlarının bulanık mantık ile sınıflandırılarak arıza tespiti

Marş motorları ağır yük altında çalışan seri sargılı doğru akım motorlarıdırlar. Marş motorları içten yanmalı motorların (İYM) başlatılmalarını sağladıklarından marş motorunun arızalanması durumunda içten yanmalı motorlar çalıştırılamazlar. Marş motorunun çektiği akım ve uçlarında düşen gerilimin değeri zamana bağlı olarak değişmektedir. Zamana bağlı olarak değişen (durağan olmayan) sinyallerin incelenmesinde Wavelet Analizi (WA), Hızlı Fourier Dönüşümüne göre daha iyi sonuç vermektedir. Bu çalışmada, arızalı marş motorunun, akım ve gerilim sinyalleri, bir ölçüm düzeneği kullanılarak ölçülmüş ve arızalı marş motoruna ait akım sinyalleri wavelet analizi ile bileşenlerine ayrıştırılmıştır. Bu ayrıştırmadan elde edilen katsayılar kullanılarak marş motorlarında ve marş sisteminde gözlenen arızalar Bulanık Mantık (BM) ile sınıflandırılmıştır. Hata teşhisi için MATLAB’ ta grafik ara yüzlü bir yazılım geliştirilmiştir. Geliştirilen bu hata teşhis sistemi ile marş motorlarında en sık gözlenen altı çeşit arıza başarıyla teşhis edilmiştir.

Fault diagnosis in starter motors by classification of wavelet analysis results of faulty starter motor's current signals using fuzzy logic

Starter motors are serial wound dc motors work under heavy duty. Starter motors are used to run the internal combustion engine (ICE). Internal combustion engines can not be run when starter motor is defective. The values of current drawn by starter motor and the voltage across the starter motor vary depending on time. In the analysis of time dependent signals (unstable signals), Wavelet Analysis (WA) is used. In this study, the current and the voltage signals of starter motors are measured by using a measurement rig and current signals of a starter motor is decomposed to its components with the help of Wavelet Analysis. With the use of coefficients derived from the decomposition, defects observed in starter motors and starter system is classified using fuzzy logic. A graphical user interface (GUI) software has been developed by using MATLAB for fault diagnosis. By using this developed fault diagnosis system, six defects seen in starter motors frequently have been diagnosed successfully.

___

  • 1. Vas, P., Parameter Estimation, Condition Monitoring and Diagnosis of Electrical Machines, Claredon Press, Oxford, A.B.D., 1993.
  • 2. Finley, W. R. and R. R. Burke, “Troubleshooting Motor Problems”, IEEE Transactions on Ind. Applications, Cilt 30, No 5, 1383-1397, 1994.
  • 3. Subhasis, N. ve Toliyat, H. A., “Condition Monitoring and Fault Diagnosis of Electrical Machines- a Review”, IEEE Ind. App. Society,Cilt 1, 197-204, 1999.
  • 4. Gao X. Z. and Ovazska S. J., “Soft Computing Methods in Motor Fault Diagnosis”, Applied Soft Computing, Cilt 1, 73-81, 2001.
  • 5. Isemann, R., “Supervision, Fault-Detection and Fault–Diagnosis Methods an Introduction”,Control Eng. Prac., Cilt 5, No 5, 639-652, 1997.
  • 6. Liu, X. Q., Zhang, H. Y., Jun, L. ve Yang, J., “Fault Detection and Diagnosis of Permanent-Magnet DC Motor Based on Parameter Estimation and Neural Network”, IEEE Tran. Ind.Electronics, Cilt 47, No 5, 1021-1030, 2000.
  • 7. Füssel, D. ve Ballé, P, Combining Neuro-Fuzzy and Machine Learning for Fault Diagnosis of a D.C. Motor, Proc. American Control Conference,37-41, 1997.
  • 8. Moseler, O. and Isermann, R., “Application of Model-Based Fault Detection to a Brushless DC Motor”, IEEE Trans. Ind. Elect., Cilt 47, No 5,1015-1020, 2000.
  • 9. Isermann, R. ve Moseler, O., “Application of Model-Based Fault Detection to a Brushless DC Motor”, IEEE Tran. Ind. Elec., Cilt. 47, No.5,1015-1020, 2000.
  • 10. Awadallah, M. A. and Marcos, M. M., “Adaptive-Fuzzy-Based Stator Winding Fault Diagnosis of PM Brushless DC Motor Drive by Monitoring Supply Current”, IEEE Power Engineering Review, Cilt 22, No 12, 46-49, 2002.
  • 11. Bayır, R. Yapay Zeka Teknikleri Kullanılarak Marş Motorlarında Hata Teşhisi, Doktora Tezi,Gazi Üniv., Fen Bilimleri Enstitüsü, 2005.
  • 12. Bayir, R. and Bay, Ö. F., Serial Wound Starter Motor Faults Diagnosis Using Artificial Neural Network, ICM’ 04 Proceedings of the IEEE International Conference Mechatronics, Istanbul,Turkey, 194-199, 2004.
  • 13. Bay, Ö.F. ve Bayir, R., “Kohonen Network Based Fault Diagnosis and Condition Monitoring of Pre-Engaged Starter Motor”, Int. J. of Automotive Technology, Cilt 6, No 4, 341-351, 2005.
  • 14.Misiti, M, Misiti, Y., Oppenheim, G., ve Poggi, J.M., Wavelet Toolbox User’s Guide, The Math Works Inc., USA, 2005.
  • 15. Wang, P., Propes, N., Khiripet, N., Li, Y. ve Vachtsevanos G., An Integrated Approach to Machine Fault Diagnosis, IEEE Annual Textile, Fiber and Film Industry Technical Conference, 4-6, May, 1999.
  • 16. Boltezar, M., Simonovski, I. ve Furlan, M., “Fault Detection in DC Electro Motor Using Continuous Wavelet Transform”, Meccanica , Cilt 38, No 2, 251-264, 2003.
  • 17. Lou, X., Loparo, K. A., Discenzo, F. M., Yoo, J.ve Twarowski, A., A Wavelet - Based Technique for Bearing Diagnostics, Int. Conference on Acoustics, Noise and Vibration, Montreal,Canada, 8-12, August 2000.
  • 18. Lee, D. ve Morrison, R., “Multiresolution Based Pattern Recognition Approach for Condition Monitoring of Switchgear”, Electrical & Computer Systems Engineering Dept., Monash University, Australia, 1999.
  • 19. Dalpiaz, G., Rivola A ve Rubini, R., “Gear Fault Monitoring: Comparison of Vibration Analysis Techniques”, Proc. 3rd Int. Conf. Acoustical and Vibratory Surveillance Methods and Diag.Tech., Senlis, France, Cilt 2, 623-637, 1998.
  • 20. Bhunia, S. ve Roy, K., “Fault Detection and Diagnosis Using Wavelet Based Transient Current Analysis”, Design Auto. and Test in Europe, March, 2002.
  • 21. Kim, K. ve Parlos, A. G., “Induction Motor Fault Diagnosis Based on Neuropredictors and Wavelet Signal Processing”, IEEE/ASME Transactions on Mechatronics, Cilt 7, No 2, 200-219, 2002.
  • 22. Magnago, F. H. ve Abur, A., “Fault Locations Using Wavelets”, IEEE Transactions on Power Delivery, Cilt 113, No 4, 1475-1480, 1998.
  • 23. Khurram, M. ve Kaushik, R., “Fault Detection and Locations Using IDD Waveform Analysis”, IEEE Design & Test Comp., 42-49, 2001.
  • 24. Gazdik, I., “Fault Diagnosis and Prevention by Fuzzy Sets”, IEEE Transaction on Reliability,Cilt R-34, No 4, 382-388, 1985.
  • 25. Isermann, R., “On Fuzzy Logic Applications for Automatic Control, Supervision and Fault Diagnosis”, IEEE Trans. Sys., Man & Cyb., Cilt 28, o 2, 221-235, 1998.
  • 26. Frank, M. P. and Seliger, K. B., “Fuzzy Logic and Neural Network Applications to Fault Diagnosis”,Int. Journal of Approximate Reasoning, Cilt 16, 67-88, 1997.
  • 27. Nejjari, H. and Benbouzid, M. E. H., “Application of Fuzzy Logic to Induction Motors Condition Monitoring”, IEEE Power Eng. Rev, Cilt 19, 52– 54, 1999.
  • 28. Zeng, L. and Wang, H. P., “Machine-Fault Classification: a Fuzzy–Set Approach”, Int.Journal of Advanced Manufacturing Tech., Cilt 6, 83-94, 1991.
  • 29. Liu, T. I., Singonahalli, J. H. and Iyer, N. R.,“Detection of Roller Bearing Defects Using Expert System and Fuzzy Logic”, Mech. Systems and Signal Processing, Cilt 5, 595-614, 1996.
  • 30. Chow, M. Y., Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection, World Scientific Pub., Singapore, 1997.
  • 31. Mechefske, C. K., “Objective Machinery Fault Diagnosis Using Fuzzy Logic”, Mech. Systems and Signal Proc., Cilt 12, No 6, 855-862, 1998.
  • 32. Bay, O.F. ve Bayir, R.,“Fault Diagnosis of Starter Motors Using Fuzzy Logic”, 3rd International Advanced Technologies Symp., Ankara, Turkey, 520-534, 2003.
  • 33. Denton, T., Automobile Electrical and Electronic Systems, 2nd Edition, Arnold Publisher, London, 2000.
  • 34. Bolenz, K., Automotive Electric/Electronic System, Robert Bosch, Germany Stuttgart 1995.
  • 35. Pico Technology Catalogue (Automotive Diagnostic Kit), March-Sept., 1999.
  • 36. Mallat, S. G., “A Theory for Multiresolution Signal Decomposition: The Wavelet Representations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Cilt 11, No.7, 674-693, 1989.
  • 37. Mallat, S. ve Hwang W. L., “Singularity Detection and Processing with Wavelets”, IEEE Transactions on Information Theory, Cilt 38,No 2, 617-643, 1992.
  • 38. Hamid, E., Y., Yokoyama, N. ve Kawasaki, Z. I., “Rms and Power Measurements: A Wavelet Packet Transform Approach”, T.IEE Japan, Cilt.122-B, No 5, 559-606, 2002.
  • 39. Tungkanawanich, A., Kawasaki, Z. I., Matsuura, K. ve Kuno, H., “Ground Fault Discrimination based on Wavelet Transform using Artificial Neural Networks”, T. IEE Japan, Cilt 120-B, No 10, 1263-1270, 2000.
  • 40. Jayasankar, V., Kumar, P. P. ve Babu, K. L.,Failure Recognition in Transformer Using Time- Frequency Analysis, Int. Conference on Signal processing and Application Technology(ICSPAT 2000), Texas, October 2000.
  • 41. Wanlu, J., Shuqing, Z., ve Yiqun, W., Applying Multi resolution Analysis for Processing of Hydraulic Pump Fault Signal, Fifth Int. Conf. on Fluid Power Transmission and Control (ICFP 2001), Hangzhou, China, 3-5 April, 2001.
  • 42. Gültekin, S., Wavelet Analizi, YL Dönem Projesi, Gazi Üniv., Fen Bilimleri Enst., 2002.
  • 43.Bayır,R.ve Bay,Ö.F,Arızalı Marş Motoru Akım Sinyallerinin Wavalet Analizi İle Sınıflandırılması,4.Uluslararası İleri Tekn.Semp.,Konya,Turkiye,Eylül 28-30 2005.
  • 44.Mendel,J.T.,"Fuzzy Logic Systems for Engineering: A Tutorial " , Proceeding of the IEEE.Cilt 83,No 3,345-377,1995.