Çok kriterli bulanık genetik algoritma ile dalgıç asenkron motorların tasarım optimizasyonu

Bu çalışmada, dalgıç asenkron motorların tasarım optimizasyonu çok kriterli genetik algoritma kullanılarak gerçekleştirildi. Motor tasarımı, bulanık kümeler ve bulanık karar yapma kavramlarından faydalanarak çok kriterli bulanık optimizasyon problemi olarak formüle edildi ve genetik algoritmalar ile çözüldü. Optimal tasarımın geçerliliğini doğrulamak için iki boyutlu Sonlu Elemanlar Yöntemi (SEY) kullanıldı. Optimizasyon sonuçları amaçlanan yöntemin etkisini ve başarısını gösterdi.

Design optimization of submersible induction motors by multiobjective fuzzy genetic algorithm

This paper presents multiobjective fuzzy genetic algorithm optimization approach to a submersible motor design. Utilizing the concept of fuzzy sets and convex fuzzy decision making, the motor design task is formulated as a multiobjective fuzzy optimization problem and solved using a genetic algorithm. The two-dimensional Finite Element Method (FEM) is then used to confirm the validity of the optimal design. The optimization results show the effectiveness and achievement of the proposed method.

___

  • 1. Boldea I., Nasar, S.A., The Induction Machine Handbook, CRC Press, 2002.
  • 2. Appelbaum J., Fuchs E.F., White J.C., “Optimization of three-phase induction motor design, Part I, Part II: formulation of the optimization technique”, IEEE Trans. on Energy Conv, Vol. 2, pp. 407–422, 1987.
  • 3. Fci R., Fuchs E.F., Huaugh H., “Comparison of two optimization techniques for the design of a three-phase induction motor design”, IEEE Trans on Energy Conv, 4(4):651-9,1989.
  • 4. Faiz J., Sharifian M.B.B., “Optimal design of an induction motor for electric vehicle”, Europan Trans. on Electrical Power, Vol. 16, pp. 15-33, 2006.
  • 5. Bianchi N., Bolognani S., Design optimization of electric motors by genetic algorithm”, IEE Proc. Electr. Power Appl., Vol.145, pp. 475-483, 1998.
  • 6. Wieczorek J.P., Göl Ö., Michalewicz Z., “An evolutionary algorithm for the optimal design of induction motors”, IEEE Trans. On Magnetics,Vol. 34, pp. 3882-3887, 1998.
  • 7. Çunkaş M., Akkaya R., Bilgin O., “Cost optimization of submersible motors using a genetic algorithm and a finite element method”, Int. J of Adv. Manuf. Technol., vol.33, pp. 223-232, 2007.
  • 8. Im C.H., Jung H.K., Kim Y.J., “Hybrid genetic algorithm for electromagnetic topology optimization”, IEEE Trans. On Magnetics, Vol. 39, pp.2163-2169, 2003.
  • 9. Pillay P., Nolan R., Haquue T., “Application of genetic algorithms to motor parameter determination for transient torque calculations”, IEEE Trans. On Ind. Appl., Vol. 33, pp. 1273- 1282, 1997.
  • 10. Kim M.K, Lee C.G, Jung H.K., Multiobjective optimal design of three-phase Induction motor using improved evolution strategy, IEEE Trans On Magnetıcs, Vol. 34, pp 2980-2983, 1998.
  • 11. Mirzaeian B., Moallem M., Tahani V., Lucas C., “Multiobjective optimization method based on a genetic algorithm for switched reluctance motor design”, IEEE Trans. on Magnetics, Vol. 38, pp. 1524-1527, 2002.
  • 12. Liuzzi G., Lucidi S., Parasiliti F., Villani M., « Multiobjective optimization techniques for the design of induction motors”, IEEE Trans. on Magnetics, Vol. 39, pp. 1261-1264, 2003.
  • 13. Bellman R.E., Zadeh L.A., Decision making in a fuzzy environment, Management science, Vol.17, pp. 141-164,1970.
  • 14. Trebi-Ollennu A., White B.A., “Multiobjective fuzzy genetic algorithm optimization approach to nonlinear control system design”, IEE Proc.-Control Theory Appl., Vol.144, pp. 137-142, 1997.
  • 15. Huang H.Z., Gu Y.K, Du X., “An interactive fuzzy multi-objective optimization method for engineering design”, Eng. Appl. of Artificial Intelligence, Vol. 19, pp. 451-460, 2006.
  • 16. Chen L., “Multiobjective design optimization based on satisfaction metrics”, Engineering Optimization, Vol.33, pp. 601-617, 2001.
  • 17. Minghua Y., Changwen X., “Multiobjective fuzzy optimization of structures based on generalized fuzzy decision-making”, Computers & Structures, pp. 411-417, 1994.
  • 18. Faiz J., Sharifian M.B.B, Keyhani A., Proca A., “Performance comparison of optimally designed induction motors with aluminum and copper squirrel-cages”, Elect. Machinery and Power Systems, Vol. 28, pp. 1195-1207, 2000.
  • 19. Veinott C.G., Theory and design of small induction motors, McGraw-Hill, New York, 1959.
  • 20. De Weerdt H.R., Tuinman E., “Finite element analysis of steady state behavior of squirrel cage induction motors compared with measurements”, IEEE Trans. on Magnetics, Vol. 33, pp. 2093- 2096, 1997.
  • 21. Bianchi N., Bolognani S., Comelato G., “Finite element analysis of three phase induction motors: comparison of two different approaches”, IEEE Trans. on Energy Conv, Vol. 14, pp. 1523-1528, 1999.